
HAL Id: hal-02652140
https://hal.science/hal-02652140

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Correctness by construction and style preserving
reconfigurations of system of systems

Cédric Eichler, Khalil Drira, Thierry Monteil, Patricia Stolf

To cite this version:
Cédric Eichler, Khalil Drira, Thierry Monteil, Patricia Stolf. Correctness by construction and style
preserving reconfigurations of system of systems. SAC 2018: The 33th ACM/SIGAPP Symposium on
Applied Computing, Apr 2018, Pau, France. pp.1680-1686. �hal-02652140�

https://hal.science/hal-02652140
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/ 22153

To cite this version:

Eichler, Cédric and Drira, Khalil and Monteil, Thierry and Stolf, Patricia
Correctness by construction and style preserving reconfigurations of system of
systems. (2018) In: SAC 2018: The 33th ACM/SIGAPP Symposium on Applied
Computing, 9 April 2018 - 13 April 2018 (Pau, France).

Official URL:

https://doi.org/10.1145/3167132.3167312

Open Archive Toulouse Archive Ouverte

Correctness by Construction and Style Preserving
Reconfigurations of System of Systems
Cédric Eichler

LIFO EA 4022, INSA Centre Val de Loire

Bourges, France

cedric.eichler@insa-cvl.fr

Khalil Drira

LAAS-CNRS

Toulouse, France

drira@laas.fr

Thierry Monteil

LAAS-CNRS, INSA Toulouse

Toulouse, France

monteil@laas.fr

Patricia Stolf

IRIT, Université Jean Jaurès

Toulouse, France

stolf@irit.fr

ABSTRACT
In distributed systems and dynamic environments, software ar-
chitectures may evolve. A crucial issue when conducting system
evolutions is to maintain the system in a consistent and functional
state. As system complexity rises, manual checking or exhaustive
model checking may be too time- and resource-consuming, lacking
in scalability. This is particularly true with system of systems. Based
on formal proofs in design-time, correctness by construction has
recently emerged to efficiently guarantee system coherency.
This article proposes a new method for the construction and speci-
fication of correct by construction system reconfigurations. Such
transformations are characterized by graph rewriting rules that
necessarily preserve the coherency of a system. We firstly propose
operators on graph transformations and show that they conserve
their correctness. Given a system specified by a graph grammar,
these operators can be leveraged to construct correct transforma-

tions. We show in particular that any correct configuration can be
reached starting from any other one without inconsistent interme-

diate step, using such transformations only.

1 INTRODUCTION
Dynamic software architectures are studied in order to handle
adaptation in autonomic distributed systems, coping with new
requirements, new environments, and failures. By their very nature,
the description of evolving architectures cannot be limited to the
specification of a unique static topology, but must cover the scope

of all the correct configurations. This scope is characterized by

an architectural style, qualifying what is correct and what is not.

Once this distinction made, system transformations themselves

must be specified to depict their applicability conditions and effects.

A crucial undesirable implication of these evolutions is a potential

loss of correctness.

Formal unambiguous methods are necessary to study the consis-

tency of a system at a given time (i.e., its compliance to a specified

architectural style). Several ways of doing so have been developed

in the literature. The most immediate approach, checking the con-

sistency of the system at run-time, may lead to combinatorial ex-

plosions and the necessity of roll-backs if it is discovered that the

system is in an inconsistent state. To efficiently tackle correctness in

the scope of dynamic reconfiguration, correctness by construction

[1] through formal approaches have emerged [2, 3]. Based on formal
proofs and reasoning in design-time, they guarantee the correctness
of a system, requiring little or no verifications in run-time. A way

to achieve such proofs is to investigate the properties of transfor-

mations with regard to consistency preservation, so as to ensure

that if a transformation is applicable on a correct configuration its

result is another correct configuration. A transformation satisfying

this property is then considered correct. Conceptually, this means

that any evolution characterized by a correct transformation can

be safely triggered without worrying about the consistency of the

resulting configuration.

Graph grammars constitute an expressive formalism for the

characterisation of architectural styles. In particular, they offer a

generative definition of the scope of correctness, where a set of

graph rewriting rules called production rules axiomatically satisfy

the criteria of correctness for the specified system. The approach

presented in this paper consists in exploiting three operators on
graph rewriting rule preserving the properties of consistency preser-
vation. Given some graph grammar, and thus a set of production

rules, these operators can be used to construct a set of correct trans-
formations. Evolutions specified by this set are sufficient to reach
any correct instance of the style starting from any other one without
any inconsistent intermediate step.

The key contributions of this paper are :

(1) The specification of two operators on graph transformations

(specialization and composition) that conserves correctness

of transformations.

(2) The study of inversion and the stipulation of hypotheses

under which it preserves transformation correctness.

(3) The characterization, for any given grammar (for which

inversion preserve correctness), of a set of correct trans-

formations ensuring that any instance of the style may be

reached starting from any other without any inconsistent

intermediate step.

Vocabulary and concepts from category theory is willingly ignored

in this paper. Rather, a low-level, implementation-appropriate, view

is adopted. Section 2 introduces aspects of model transformations

and approaches for correctness verification. Key concepts related to

partially instantiated graphs, their relationships, transformations,

and grammars are introduced in Sec. 3. Operators on transforma-

tions conserving their correctness are defined in Sec. 4. Section 5

shows that these operators can be used to generatively characterize

a set of correct transformations allowing to reach any configuration

from any other.

2 RELATED WORKS
There exists various kind of transformations each having different

purposes. They can be loosely classified depending on their impact

on the model and the level of abstraction.

Exogenous transformations [2–4] imply a change of model but do

not modify the system (or its properties). They are used to generate

code or to transform a graphical model into a more formal one,

for example. Endogenous transformations [5–7] remains the model

invariant but change the state of a system. Vertical transformations
[2–4, 7], e.g. refinements, modify the granularity and the level of

precision with which the system is represented. Horizontal trans-
formations [5, 6] are usually related to model changes or system

evolutions.

In this paper, we are interested in endogenous horizontal transfor-

mations, called reconfigurations. They typically represent adapta-

tions in self-adaptive systems. We assume that these adaptations

are guided and aim at guaranteeing the preservation of system

consistency.

Methodologies for correctness validation of evolving systems can

be classified within three categories. Configuration checking, that
consists in validating in run-time thewhole system by verifying that

some properties are met. This technique is very time-consuming

and may lead to combinatorial explosions. Furthermore roll-backs

may have to be applied if it is discovered that the system is in

an inconsistent state. Transformation checking [5, 6], consists in

verifying in run-time that a transformation do not introduce any

inconsistency. While it is generally more effective than the previ-

ous solution, roll-backs are not dismissed. Correct-by-Construction
Transformations [2–4], consists in guaranteeing in design time that

a transformation necessarily produce a correct state. Not only does

this method implies few to no reasoning in design-time, but it also

completely discard roll-backs.

In turn, the notion of correctness may vary depending on the

transformations’ nature. It may be the preservation of the system

behaviour [2, 3], for code generation of model modification, for ex-

ample. In some other case, correctness is linked to the presence, the

absence or the the conservation of some property [6]. Architectural

styles are particularly relevant when considering dynamic system.

In this context, consistency is synonym of the compliance to a style

[5].

Furthermore, and unlike [5], we consider transformations as

rewriting rules solely and decorrelate them from graphs they are

applied to. In this way, correctness is a property of the rule only, and

transformations are valid for the whole range of valid graphs. To

the best of our knowledge, the method presented in this paper is the

first to guarantee correctness-by-construction for reconfigurations

w.r.t. an architectural style allowing to reach any of its instance.

3 PRELIMINARIES, GRAPH BACKGROUND.
The following offer a quick overview of the formal approach adopted

in this paper. Firstly, variable attributed graphs and their relation-

ships through graph morphisms are introduced. These relations

then serve as a basis for the definition of graphs transformations

and rewriting techniques and, finally graph grammars.

3.1 Attributed Graphs
At a given time, the state of a system, be it a System of System

(SoS) or not, can be modelled by a conceptual graph. Classically,
vertices (V) represent services or architectural components. In SoSs,

vertices represent the systems composing the SoS. Edges (E ⊆ V 2
)

correspond to their related connections, interdependencies or rela-

tionships. Each element el of the graph (i.e., its vertices and edges)

is associated with an arbitrary number of attributes Attel repre-
senting any relevant property or information. Each attribute might

be either constant or variable and is characterized by its valueAtteli
and its domain of definitionDAtteli . An graph with constant and
variable attributes is noted G = (V ,E,Att).

To distinguish between constant and variable attributes in the

examples, a constant attribute will be noted within quotation marks.

Furthermore, we impose that two variable attributes from two

disjoint graphs can not have the same name.

3.2 Pattern Matching and Relationships
between Graphs

In order to find graph-like patterns in a context where attributes

may be variable, the notion of element (vertices and edges) identifi-

cation has to be defined. When trying to identified two elements,

theirs attributes are matched two at a timew.r.t. the order of their oc-

currence (i.e., their i-th attributes are associated with one another).

Two elements are unifiable if (1) they have the same number of

attributes and (2) matched attributes have the same domain of defi-

nition.

Element unifications induce attribute associations that can be seen

as an equivalence relation (noted ∼) over the set of attributes. The

resulting setoid is called a set of identifications. It is considered
coherent if each of the induced equivalence class contains at most

one constant. This means that no variable has been directly or tran-

sitively identified with two different constants.

An affectation is the function impacting attributes identifications.

Each occurrence of a variable is substituted with the representative

of its equivalence class. If the class contains a constant, it is its

representative, else the representative is chosen arbitrarily.

The existence of a homomorphism between two graphs formal-

izes the presence of a pattern similar to the first graph within the

second. A homomorphism h between two attributed graphs G
and Gis defined as an injective function f from the vertices of G to
th ose of G that preserves the edges [8) (if there is an edge between
two vertexes in G, there is an edge between their images in G). In

addition, associated vertexes and edges have to be unifiable and the
resulting set of identification Ï has to be consistent. An homomor­
phism is characterized by f and I , a consistent set of identification
such that J :2 Ï. By notational abuse, any function f : A -+ B is
assimilated to its canonic extension f: Au A2 -+ BU B2 such that
v (a,a) E A2

, f((a,a)) = (f(a), f(a)).
Graph compatibility associate two induced sub-graphs through

a weaker condition : if there exists an edge between two vertices
of the first graph there does not need to be an edge between their
images, but if there is one, then those two edges have to be unifiable.

DEFINITION 1. (Compatible graphs) Two graphs G = (v, E, Att)
and G' = (V'. E'. Att') are said to be compatible or (f, I, Vs, V's}­
compatible if and only if there exists Vs ç V, V's ç v; a consistent
set of identification I and a bijective function f: Vs -+ V's such that :

(1) V (VJ, "2) E Vs 2, V (v'1, v'2) = (f(vi) ,f(vz)) E V's 2 ==> ((VJ,
vz) E E A (vi; vz ') E E') ==> (VJ, vz) is unifiable with (VJ;
"2 ').

(2) V v E Vs, V v' E V's, v' = f(v) ==> v and v' are unifiable.
(3) I :2 Ï, where Ï is the set of identifications resulting from element

unifications.

ExAMPLE 1. Figure 1 shows an example of two compatible graphs.
For readability sake, the attributes of the edges have not been repre­
sented and will be disregarded.

Let Vs be the set of vertices named 1, 2, and3 in the.figure and V's
be the set of vertices named 2', 3' and 4'. The function f : Vs -+ V5
associating the vertices named 1 to 2', 2 to 4', and3 to 3' induces the
(coherent) set of identification I = {a,b,c,x, y, "111

, "2"} with a - x
and b - 2. G and G' are (f, I, Vs, V's)-compatible.

G'

l'

1 = {a,b.c,x,y:1•:2·} and
a-x. b-·2·

Figure 1: two compatible graphs

3.3 Graph Transformations

The occurrence of a pattern within a graph or a relation between
two graphs, grant the possibility of applying graphs transforma­
tions. Since configurations of a system can be represented using
graphs, graph transformations are used to model their evolutions.

Before introducing graph rewriting rules, let's consider two bi­
nary operator on graphs, restriction î and expansion .J,. These
lasts are sirnilar to classical intersection and union, respectively.
The difference arises from the fact that a sirnilarity shall be found
rather than a strict equality between elements of the graphs. Iden­
tifying analogous elements or sub-graphs is tackled by the notion
of compatibility previously defined. Restriction and expansion thus
depend on a graph compatibility, and are similarly characterized by
an injective function between two sets of vertices and an affectation.

DEFINITION 2. (Restriction!) For any G and G' (f, Aff, Vs,
V's}-compatible graphs and any sub-graphs Gsub = (Vcsub' Ecsub '
A ttc b), G'sub = (V G' , Ea , Atta),

su sub sub sub

(1) letV={vEVs nVc b lf(v)EV'snVa },
su

sub

(2) letE={(v;Ü)E V2nEcsub J (f(v;)J(vj))EEa },sub
(3) let Att = UeleVUE (Attcsub)f1 .

The restriction relation is defined by Gsub !(f,Aff.Vs,V,s)G'sub =
Ajf((v, E, Att)).

DEFINITION 3. (Expansion î) For any G and G' (f, Aff, Vs, V's)­
compatible graphs and any sub-graphs Gsub = (Vcsub' Ecsub' Attcsub),
G'sub = (Va , Ec;, , Atta),

sub sub sub

(1) letV={vJ(vEVcsub)V
(v E V G'..ub

A v � f(Vsn V Gsub))} ,
(2) let E = {(v;ü) E V

2 1

(v;ù) E Ec bu Ea v
SU sub

(vE VsA (f(v);ù)E Ea)vsub
(v E VsA (vj(v)) E Ea)v

sub
((v, v) E ViA (f(v)j(v)) E Ea,ub

) },
(3) let Att = { Atf1 E Attc bu Attc;, 1 el EV u E A (

s" sub

(3ëlEVc b UVc;, UEc b UEa ,el=ël)v(
su sub su sub

el = (v, v) E E \ (Ecsub U Ec;,) A (
sub

(v E Vs A (f(v),v) E Ea A Aue1 = (Atta)lf(v),fJ)) V
sub sub

(v E Vs A (vj(v)) E Ea A Aue1 = (Atta)<vJ(ii))) V
sub sub

((v, v) E ViA (f(v),f(v))E Ea A Aw1 = (Atta)lf(v),f(v))

)))}.
sub sub

The expansion relation is defined by :
Gsub Î(f,Aff, Vs, v5)G'sub = Ajf((v, E, Att)).

ExAMPLE 2. With G, G'.f, Aff, Vs andV's defined in the example 1,
the result of G!(f,I, Vs, v5)G' is represented in Fig. 2(a). The result of
Gî(f,I.Vs,V,s)G' is represented in Fig. 2(b).

REMARK 1. For any (f, Aff, Vs, V's)-compatible graphs G and G'
and any sub-graphs Gsub and G'sub,
Gsub !(fJ.Vs.Vs>G'sub-+ Gsub and
Gsub !(f,J,Vs,V5)G'sub-+ G'sub· Similarly, Gsub-+ Gsub Î(f,I,Vs,V5)G'sub
and
G'sub-+ Gsub Î(f,I.Vs,V5)G'sub·

Graph rewriting is a well-studied demain where a rule describes
both a graph transformation and the circumstances under which
it may be applied. The approach used in this paper is based on
the Single Pushout (SPO) [9), where a rule is characterized by two

2 1

3

Figure 2: graph restriction (intersection) and expansion
(union)

graphs (L,R), respectively called left- and right-hand side, alongside
a partial morphism m from L to R. For clarity sake, we consider
rules satisfying L n R * 0, so that m is implicit and induced by the
identity function over Ln R (noted K). In addition, transformations
are given the possibility to update the value of attributes of the
graph on which they are applied.

,.

(a,N)
1• 2'

OP,a (U', 1,f:x•.>x-+l)}

Transformati
on rule R

Aflplylng A.
11• 2',)' m.1tcfl-, ...r.

2.S..-id4,

/

,.

•.

Supl)feUlon of the daro9lln9 cd9e,
a.nd additfon ol R\K integratin9 the
otit.!ned •ffect11tlon and upd:..tes

Figure 3: An example of graph transformation

ExAMPLE 3. Figure 3 off ers an example of how a transformation
is handled in this paper. To lighten the figure, the attributes of the
edges have not been represented and will ail be considered equals.
Considering that Land Gl are homomorph and that the suppression of
the edge 4 would not introduce any dangling edge, the transformation
R can be applied to Gl. The graph corresponding to the Del zone is
removed and an isomorph copy of the Add zone is then added.

DEFINITION 4. (Graph rewriting rnle)A graph rewriting rule is
a 3-tuple (L, R, OPs) where L = (VL, Ei, AttL) and R = (VR, ER, AttR)
are two graphs. OPs is a set of triples OP= (el, i, op), where el E VKU
EK, i E (1 1, 1(AttKf111), and op is an unary invertible operation on
(DattK/f1 under which (DattK/f1 has closure.

A rule is applicable on a graph G = (Y, E , Att) if there is a homo­
morphism h = (f, I): L-+ G. Its application consists in (1) erasing the
image ofL\K and deleting the potential dangling edges. (2) Adding
an isomorph copy of K\K integrating the affectation obtained with h.
(3) Conducting the specified updates of attributes.

The following notations will be adopted :

(1) r_h(G) is the result of the application of a graph rewriting
rule r to the graph G considering the homomorphism h : L
-+ G.

(2) r2_h2.r1_h1(G) is the result of the sequence of rewriting
consisting in applying r2 in regard of the matching h2 to the
result of r1 applied to G with the matching h1.

3.4 Characterizing Architectural Style

Inspired from Chomsky' s generative grammars, graph grammars
[8) constitute an expressive formalism for describing dynamic struc­
tures. In this paper, architectural styles are characterized by such
grammars. The correctness of the design (i.e. of the grammar) is
not questioned and defines the scope of acceptable configurations.

DEFINITION 5. (Graph Grammar)A graph grammar is defined
by the 4-tuple (AX,NT, T,P) whereAX is the axiom, NT is the sets of
non-terminal arch-vertices or archetypes of vertices, T is the set of ter­
minal arch-vertices or archetypes of vertices, and P is the set of graph
rewriting rules (or productions) belonging to the graph grammar.

DEFINITION 6. (Instance belonging to the graph grammar)
An instance belonging to thegraphgrammar (AX,NT,T,P) is a graph
whose vertices and edges have only constant attributes and obtained
by applying a sequence of productions in P toAX . If it does not contain
any vertex unifiable with an arch-vertex from NT , it is said to be
consistent.

We consider in the following that an instance of the style is a
correct configuration whether it is consistent or not. Restricting the
notion of correctness to consistent instances would only require to
verify whether a correct rule introduces a non terminal vertex.

4 THREE OPERATORS PRESERVING

TRANSFORMATIONS CORRECTNESS

The generative definition of the architectural style is at the very
core of the our proposal. By very definition, any production rule is
correct. This means that the specification of a style also provides
an initial set of correct transformations. Starting from this original
set, we wish to build other correct transformations. To do so, this

section introduces operations on transformations and show that

they preserve transformation correctness.

4.1 Specialization
The first operation introduced in this paper is rule specialization.

It consists in strengthening the applicability condition of a rule

and/or narrowing the scope of its possible results. A possible use

is to restrict the application of a rule to a particular context or to

an entity with a specific identifier (e.g., a component that has been

reported as faulty) or nature, for example.

Definition 7. Specialization A rule q = (Lq , Rq , OPsq) is said
to be a specialization of p = (Lp , Rp ,OPsp) if and only if each of the
following conditions is met.

(1) There is a homomorphism hL This homomorphism can be an

identity alongside some set of identification. = (fL , IL) : Lp
hL
−−→

Lq such that the elements IL are attributes of Lq and Lq is
invariant for the affectation induced by IL . Hence, h(Lq) has
necessarily less free variables than Lp .

(2) There is a homomorphism hR = (fR , IR) : Rp
hR
−−→ Rq such

that the elements IR are attributes of Rq , Rq is invariant for
the affectation induced by IR and ∀v ∈ VRp ,v ∈ VLp =⇒

fR (v) = fL (v).
(3) ∀ el ∈ VLq ∪ELq , el < fL(VLp)∪ f (ELp) =⇒ el ∈ VRq ∪ERq .

This means that any element deleted during an application
of q is deleted during an application of p; i.e. any element of
Lq that is not an image of an element of Lp by fL is invariant
w.r.t. the application of q.

(4) ∀ el ∈ VRq ∪ERq , el < fR (VRp)∪ fR (ERp) =⇒ el ∈ VLq ∪ELq .
This means that any element added during an application of q
is added during an application of p; i.e. any element of Rq that
is not an image of an element of Rp by fR is invariant w.r.t.
the application of q.

(5) OPsq = OPsp .

Lemma 1. For any graph G, any graph rewriting rule p and any
specialization q of p, if there exist a homomorphism h such that Lq
h
−→ G then there exists a homomorphism ¯h such that Lp

¯h
−→ G and

q_h(G) = p_¯h(G).

Proof. Remember that a homomorphism is characterized among

others by a consistent set of identifications that includes the iden-

tifications resulting from the actual element unifications. For any

graph G, let’s suppose that there exist a homomorphism h = (f , I)

such that Lp
h
−→ G.

Lq → G =⇒ Lp → G since Lp → Lq . In particular, let
¯h = (f ◦

fL , I ∪ IL ∪ IR). Since IL and IR are integrated within Lq and Rq ,

I ∪ IL ∪ IR can not be inconsistent. Hence,
¯h is an homomorphism

from Lp to G. Thanks to the third condition, the application of p

to G w.r.t.
¯h can not leads to the apparition of a dangling edge that

would not have been deleted by the application of q (since any

vertex deleted by p is deleted by q). It is immediate that q_h(G) =

p_ ˆh(G).
□

Theorem 2. A specialization of a correct (w.r.t. some architectural
style) graph rewriting rule is correct (w.r.t. said style).

Proof. Let G be a graph representing a consistent configuration

of some architectural style, p a graph rewriting rule p correct w.r.t.

said style, and q a specialization of p.

If q is applicable to G w.r.t. h, according to lemma 1 there exists

a homomorphism
¯h such that p is applicable to G and q_h(G) =

p_
¯h(G). By hypothesis and since p is correct, p_

¯h(G) is a correct
instance of the style. Hence q_h(G) is consistent. □

4.2 Composition
Compositionality of graph transformation depends on the formal-

ism used for their specification [10]. It is usually employed to enable

re-usability of rules and to decompose rules, for better understand-

ing and scalability [11, 12]. Production rules can include purely

theoretical non-terminal vertexes. Consequently, composition can

also be used in the context of this paper to skip inconsistent in-

stances of the style. For rules expressed in the SPO formalism in-

cluding variable attributes and operators, composition exists but

is not unique and depends on compatibilities between parts of the

rules, as defined below.

Definition 8. (Graph rewriting rule composition consider-
ing a specific compatibility) For any couple of graph rewriting
rules (p,q) and any compatibility C = (f, I, V ⊆ VLp , V’⊆ VRq) such
that Lp and Rq are C-compatible. Let G be the sub-graph of Lp induced
by V and let G’ be the sub-graph of Rq induced by V’.

If (H1) ∀ v ∈ VG , ∃ ṽ ∈ VLp such that (v, ṽ) ∈ ELp ∨ (ṽ , v) ∈ ELp
=⇒ f(v) ∈ Kq and
(H2) ∀(v,v ′) ∈ VG , f (v,v ′) < (Kq)

2 =⇒ ((v,v ′) ∈ ELp =⇒

f ((v,v ′)) ∈ ERq)
then p and q can be composed w.r.t. C and p◦Cq is the rewriting rule
described by :

(1) Let r1 = (AffI (G), G ↓(f ,Af f ,VG ,f (VG)) Kq , ∅) and let M =
r1_(id,AffI)(Lp). M is, modulo an affectation, Lp deprived of
the part of G not identified with Kq via f (the part of G added
when q is applied).
Lp◦Cq = M ↑(f ,I ,V(G↓f ,Af f ,V ,V ′Kq),VKq Lq .

(2) Let r1’ = (AffI (G’), Kp ↓(f ,I ,V ,V ′) G’, ∅) andM’ = r1’_(id,AffI)(Rq).
M’ is, modulo an affectation, Rq deprived of the part of G’ not
belonging to f(Kp) (the part of G’ suppressed when p is applied).
Rp◦Cq = Rp ↑(f ,I ,V(G↓f ,Af f ,V ,V ′Kq),VKq M’.

(3) OPsp◦Cq = OPsp ∪ OPsq

Lemma 3. For any graph G and any graph rewriting rule r such that
there exists a couple of graph rewriting rule (p,q) and a compatibility
C with r = p◦Cq, if r is applicable to G w.r.t. h, then there exists a
couple of homomorphism (¯h, ˜h) such that q is applicable to G w.r.t. ˜h,
p is applicable to q_ ˜h(G) w.r.t. ¯h, and r_h(G) = p_¯h.q_ ˜h(G).

Proof. Let C = (f , I ,V ,V ′) and h be (f ′, I ′).

According to remark 1, there exists
´h = (´f , Í) such that Lq

´h
−→

Lr . By hypothesis, Lr
h
−→G . Hence ˜h = (f ′ |

´f (VLq)
◦ ´f , Í ∪ I ′) is such

that Lq
˜h
−→ G.

By definition of graph rewriting rules, there exists a homomor-

phism
ˆh = (

ˆf , I ′) such that Rq
ˆh
−→ q_ ˜h(G). According to remark 1,

there exists
`h = (`f , Ì) such thatM

`h
−→ Lr . Let ¯f :VLp →Vq_ ˜h (G)

be

such that ∀v ∈ VLp ,
¯f (v) = f ′ ◦ `f (v) if v ∈ VM and

ˆf ◦ f (v) else.

By construction,
¯h = (

¯f , I ∪ I ′ ∪ Í) is a homomorphism from Lp

to q_ ˜h(G) if it preserves edges. Thanks to H1, ∀(v,v ′) ∈ ELp , (1)

(v,v ′) ∈ (VM)2∨ (2) ((v,v ′) ∈ VG ∧ f (v,v ′) < (Kq)
2
).

(1) SinceM
`h
−→ Lr

h
−→, (v,v ′) ∈ (VM)2 =⇒ ¯f ((v,v ′)) ∈ EG .

(2) Thanks to H2, (v,v ′) ∈ VG ∧ f (v,v ′) < (Kq)
2 =⇒ f ((v,v ′) ∈

ERq . Since Rq
ˆh
−→ q_ ˜h(G), ¯f ((v,v ′)) ∈ EG .

Hence, Lp
¯h
−→ q_ ˜h(G).

Due to space shortage, we do not report here the second part of

the proof that states that with the appropriate homomorphisms de-

fined in this proof and the construction of Rr , r_h(G) = p_¯h.q_ ˜h(G).
□

Theorem 4. The composition of two correct (w.r.t. some style)
graph rewriting rules is correct (w.r.t. said style).

This theorem is immediate considering lemma 3

4.3 Inversion
Inversion exploits the property of reversibility of graph rewriting

rules [8]. It consists in defining an opposite transformation can-

celling the effect of another. Intuitively, considering for example

the deployment of a new server to absorb a load peak, inversion

allows the characterization of its shut-down once the load goes

back to normal. Inversion is classically conducted by swap the right

and left hand-side of a rule. However, this would not be enough

to guarantee correctness conservation. In addition, we have to

verify that as long as a transformations that did require (i.e., that

could be applied only in the presence of) the component has not

been “cancelled”, the component can not be suppressed. When us-

ing graph rewriting, this “require” relationship translates to the

presence of the component in the image of the left hand-side of

the rule considering the homomorphism linked with its application.

As a consequence, we assume that each vertex possesses an

attribute that is a matching counter. This can be easily automated

and hidden to the user by adding, for each element el , a concealed

attribute ATT
el
0

in N that is a mute free variable, except when

initialized. It is initialized at 0 (i.e., for each production rule p, for

all el element of Rp\ Kp , ATT
el
0

= 0). To each production rule is

appended operators that increment the counter of each element in

K (i.e., for each el ∈ VK ∪ EK , OP = (el , 0, f : N→ N such that f(x)

= x+1) ∈ OPs).

Definition 9. (Inverse rule) A graph rewriting rule r−1 is the
inverse of a graph rewriting rule r if : Rr−1 = Lr , Lr−1 = Rr , and OPsr−1

= { OP = (el, i, f) : ∃ ÕP ∈ OPsr , OP = (el, i, f−1) }.

Noticeably, if the inversion of a production rule is applicable on

a graph, then the matching counter of each vertex that would be

deleted during its application is equal to 0. Moreover, its application

decrements the matching counter of each vertex in its invariant

part. In addition, for any graph rewriting rule r, (r
−1
)
−1

= r.

Theorem 5. The inversion of a correct (w.r.t. some style) graph
rewriting rule r is correct (w.r.t. said style) if :

• (H1) : there exists a “matching counter” as described previously.
• (H2) : for any instance of the style G, the presence of a pattern
isomorph to Rr in G implies that G can be obtained starting
from the axiom by applying a sequence of correct rewriting
rules, one of which being r (that has introduced said pattern).

Note that the second hypothesis is not met for any grammar.

Intuitively, for the set of rules : p1 : AX → a, p2 : AX → ab, it is

possible to have a pattern corresponding to the right-hand side of

a rule (a) in a word that can not be derived using said rule (ab). It is

also not a property of the style (i.e., the scope of consistency) itself,

but rather of its definition (i.e., the grammar). Indeed, the previous

grammar can be rewritten in a way that respects this property such

that : p
1̃
: AX→ a and p

2̃
: a→ ab.

Proof. By hypothesis (H2), if r
−1

is applicable to G w.r.t. some

homomorphism h, then there exists a sequence of rules and ho-

momorphisms ((ri , hi))i ∈[|1,n]]
such that rn_hnr1_h1(AX) = G

and there exists k ∈ [|1,n]] such that rk = r.

It is immediate that for any graph graph rewriting rule r and any

graph G, if r is applicable to G w.r.t a homomorphism
¯h then there

exists a homomorphism h’ such that r
−1
h’.r

¯h(G) = G. h’ is the

canonical homomorphism associating Lr−1 = Rr with the isomorph

copy of Rr introduced while applying r on G. Consequently, if k =

n, the theorem is true since r
−1
_h(G) = rn−1_hn−1.(. . .) .r1_h1(AX)

which is by definition an instance of the style. If k < n, the idea of

the proof is as follows:

According to H2, h(Lr−1 has been introduced by applying rk
(i.e., rn applied w.r.t. hn do not introduce anything required for

the application of r
−1

w.r.t. h). Hence r
−1

is applicable w.r.t. h on

rn−1_hn−1.(. . .).r1_h1(AX).

Since r
−1

does not delete any element of G match with Lrn
through hn (H1), (2.a) suppressing dangling edges can not affect hn
(since the suppressed extremity should also be matched through

hn), (2.b) r
−1

do not invalidate hn .

Hence, rn is applicable to r
−1
_h.rn−1_hn−1.(. . .).r1_h1(AX) w.r.t.

hn . In particular, rn_hn .r
−1
_h.(. . .).r1_h1(AX) = r

−1
_h(G).

By conducting this reasoning until getting r
−1
_h(G)

= rn_hn .(. . .).r
−1
_h.rk .hk . (. . .).r1_h1(AX), we obtain r

−1
_h(G) =

rn_hn .(. . .).rk−1
_h.rk+1

.hk .(. . .).r1_h1(AX), which is by definition

an instance of the style. □

5 GUIDING EVOLUTIONS WITH CORRECT
TRANSFORMATIONS

On one hand, we have seen in Sec. 3.4 that a graph grammar com-

prises a set of production rules correct by definition. On the other,

section 4 introduces operators on transformations that preserve

their correctness. These two facts immediately bring up the follow-

ing questions : what do we obtain if we apply introduced operators

to the set of productions?

5.1 Configuration reachability
The first worthwhile property considered is the capacity of reaching

a configuration given some initial state. Typically, a (potentially

autonomic) manager identify a desirable configuration; can it nec-

essarily be reached given the current state of the system?

Theorem 6. Any instance of a given graph grammar can be
reached starting from any other using only production rules and
their inverses.

5.2 Avoiding inconsistent instances of the style
Instances of the style can be correct or not, depending on the exis-

tence of non-terminal vertexes within them. Such vertexes are the-

oretic artefacts with no “real-life” value. To avoid this discrepancy,

one may wish to remain in the scope of consistent configurations

and avoid inconsistent instances.

Theorem 7. For any graph grammar (AX, T, NT, P), let Trans
be the smallest -potentially infinite- set of graph rewriting rules con-
taining P for which inversion and composition have closure. Any
consistent instance of the grammar can be reached starting from any
other without any inconsistent intermediary by applying a sequence
of rules in Trans.

Proof. The idea of the proof of theorems 6 and 7 is as follows.

For a given grammar, let’s consider a new kind of graph with a

higher level of abstraction representing the generation process

of instances of the grammar. Vertexes of such graphs represent

instances of the grammar -the previous graphs- and edges model

the application of a production. The existence of an edge from

v to v ′ means that v ′ can be obtained from v by applying some

production.

For each edge (v,v ′) symbolizing the application of p, one can
introduce an edge (v ′,v) representing the application of p−1

can-

celling the application of p. Since there exists -by definition- a path

from the axiom to any vertex and a path from any vertex to the

axiom, it is easy to see that there exists a path from any vertex

to any other one. The fact that this graph is strongly connected

directly implies theorem 6.

For each path from a consistence instance to another, each sub-

path that contains only inconsistent instances can be by-passed by

adding to the graph a vertex representing the composition of the

transformation leading to or within the set of inconsistent instances.

Finally, each inconsistent configuration can be deleted, and the

resulting graph is still strongly connected, giving theorem 7. □

6 CONCLUSION
Given a graph grammar specifying a system or a SoS, this paper in-

troduces a method to build correct transformations that necessarily

preserves the conformance to the grammar. Correct transformations

are particularly relevant in the management of dynamic (system of)

systems. Their use can ensure theoretical consistency w.r.t. guided

adaptations without requiring any checking in run-time.

The defined method originate from the fact that a graph gram-

mar comprise a set of axiomatically correct transformations. The

first contribution of this paper is the specification of correctness-

preserving operators on system transformations. Alongside the

initial correct transformations, they allow the characterization of

a larger (infinite) set of correct transformations. We finally prove

that any correct configuration can be reached starting from any

other one without any inconsistent intermediate step using trans-

formations from the previously defined set only.

However, the style-preserving property of one of the operator

(inversion) is subject to an hypothesis on the grammar. In a short

future, we plan on further investigating this property. We are par-

ticularly interested in grammar transformations that introduce the

satisfaction of the required condition. On a more practical side, it

is necessary to hide the intrinsic complexity of the formalism to

future users. To this end, we wish to implement a graphical tool for

the creation and manipulation of transformations.

REFERENCES
[1] G. Gössler, S. Graf, M. Majster-Cederbaum, M. Martens, and J. Sifakis, “Ensuring

properties of interaction systems,” in Program analysis and compilation, theory
and practice. Springer, 2007.

[2] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, U. Freund,

E. Schlenker, and H.-J. Wolff, “Correct-by-construction transformations across

design environments for model-based embedded software development,” in De-
sign, Automation and Test in Europe, 2005.

[3] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis, “Automated

conflict-free distributed implementation of component-based models,” in Interna-
tional Symposium on Industrial Embedded Systems, 2010.

[4] M. Tounsi, M. Mosbah, and D. Méry, “From Event-B Specifications to Programs

for Distributed Algorithms,” in 22th IEEE International Conference on Enabling
Technologies: Infrastructures for Collaborative Enterprises., 2013.

[5] D. Hirsch and U. Montanari, “Consistent transformations for software archi-

tecture styles of distributed systems,” Electronic Notes in Theoretical Computer
Science, vol. 28, pp. 4–25, 2000.

[6] C. Percebois,M. Strecker, andH. N. Tran, “Rule-level verification of graph transfor-

mations for invariants based on edges’ transitive closure,” in Software Engineering
and Formal Methods, 2013, pp. 106–121.

[7] F. Oquendo, “pi-arl: An architecture refinement language for formally modelling

the stepwise refinement of software architectures,” SIGSOFT Softw. Eng. Notes,
vol. 29, no. 5, pp. 1–20, 2004.

[8] G. Rozenberg, Ed., Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

[9] M. Löwe, “Algebraic approach to single-pushout graph transformation,” Theoreti-
cal Computer Science, vol. 109, no. 1âĂŞ2, pp. 181 – 224, 1993.

[10] D. Duval, R. Echahed, and F. Prost, “Categorical abstract rewriting systems and

functoriality of graph transformation,” ECEASST, vol. 41, 2011.
[11] A. Rensink, “Compositionality in graph transformation,” in Automata, Languages

and Programming, 2010, pp. 309–320.
[12] A. Balogh and D. VarrÃş, “Pattern composition in graph transformation rules,”

in European Workshop on Composition of Model Transformations, 2006.

