J. Laskar and M. Gastineau, Existence of collisional trajectories of Mercury, Mars and Venus with the Earth, Nature, vol.317, issue.7248, pp.817-819, 2009.
DOI : 10.1038/nature08096

M. Joldes, V. Popescu, and W. Tucker, Searching for Sinks for the H??non Map using a Multipleprecision GPU Arithmetic Library, ACM SIGARCH Computer Architecture News, vol.42, issue.4, pp.63-68, 2014.
DOI : 10.1145/2693714.2693726

A. Abad, R. Barrio, and A. Dena, Computing periodic orbits with arbitrary precision, Physical Review E, vol.84, issue.1, p.16701, 2011.
DOI : 10.1103/PhysRevE.84.016701

L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR, ACM Transactions on Mathematical Software, vol.33, issue.2, 2007.
DOI : 10.1145/1236463.1236468

URL : https://hal.archives-ouvertes.fr/inria-00103655

Y. Hida, X. S. Li, and D. H. Bailey, Algorithms for quad-double precision floating point arithmetic, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001, pp.155-162, 2001.
DOI : 10.1109/ARITH.2001.930115

J. Muller, N. Brisebarre, F. De-dinechin, C. Jeannerod, V. Lefèvre et al., Handbook of Floating-Point Arithmetic, Birkhäuser Boston, 2010.
DOI : 10.1007/978-0-8176-4705-6

URL : https://hal.archives-ouvertes.fr/ensl-00379167

M. D. Ercegovac and T. Lang, Division and Square Root: Digit- Recurrence Algorithms and Implementations, 1994.

T. J. Ypma, Historical Development of the Newton???Raphson Method, SIAM Review, vol.37, issue.4, pp.531-551, 1995.
DOI : 10.1137/1037125

M. Cornea, R. A. Golliver, and P. Markstein, Correctness proofs outline for Newton?Raphson-based floating-point divide and square root algorithms, Proceedings of the 14th IEEE Symposium on Computer Arithmetic, pp.96-105, 1999.

M. Joldes, J. Muller, and V. Popescu, On the computation of the reciprocal of floating point expansions using an adapted Newton-Raphson iteration, 2014 IEEE 25th International Conference on Application-Specific Systems, Architectures and Processors, pp.63-67, 2014.
DOI : 10.1109/ASAP.2014.6868632

URL : https://hal.archives-ouvertes.fr/hal-00957379

D. M. Priest, Algorithms for arbitrary precision floating point arithmetic, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic, pp.132-144, 1991.
DOI : 10.1109/ARITH.1991.145549

J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, Discrete & Computational Geometry, vol.18, issue.3, pp.305-363, 1997.
DOI : 10.1007/PL00009321

D. M. Available and . Priest, On properties of floating-point arithmetics: Numerical stability and the cost of accurate computations, 1992.

P. Kornerup, V. Lefèvre, N. Louvet, and J. Muller, On the computation of correctly-rounded sums, Proceedings of the 19th IEEE Symposium on Computer Arithmetic (ARITH-19), 2009.
URL : https://hal.archives-ouvertes.fr/inria-00475279

S. M. Rump, T. Ogita, and S. Oishi, Accurate Floating-Point Summation Part I: Faithful Rounding, SIAM Journal on Scientific Computing, vol.31, issue.1, pp.189-22431, 2008.
DOI : 10.1137/050645671

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Ogita, S. M. Rump, and S. Oishi, Accurate Sum and Dot Product, SIAM Journal on Scientific Computing, vol.26, issue.6, pp.1955-1988, 2005.
DOI : 10.1137/030601818

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Jeannerod and S. M. Rump, Improved Error Bounds for Inner Products in Floating-Point Arithmetic, SIAM Journal on Matrix Analysis and Applications, vol.34, issue.2, pp.338-344, 2013.
DOI : 10.1137/120894488

URL : https://hal.archives-ouvertes.fr/hal-00840926

]. M. Daumas and C. Finot, Division of floating point expansions with an application to the computation of a determinant, Journal of Universal Computer Science, vol.5, issue.6, pp.323-338, 2013.