P. Abbeel and A. Y. Ng, Inverse Reinforcement Learning, Encyclopedia of Machine Learning, pp.554-558, 2010.
DOI : 10.1007/978-1-4899-7502-7_142-1

Y. Abdedda¨?mabdedda¨?m, E. Asarin, M. Gallien, F. Ingrand, C. Lesire et al., Planning Robust Temporal Plans: A Comparison Between CBTP and TGA Approaches, 2007.

R. Alami, R. Chatilla, S. Fleury, M. Ghallab, and F. Ingrand, An Architecture for Autonomy, The International Journal of Robotics Research, vol.17, issue.4, pp.315-337, 1998.
DOI : 10.1177/027836499801700402

URL : https://hal.archives-ouvertes.fr/hal-00123273

V. Alcázar, M. M. Veloso, and D. Borrajo, Adapting a Rapidly-Exploring Random Tree for Automated Planning, 2011.

J. F. Allen, Towards a general theory of action and time, Artificial Intelligence, vol.23, issue.2, pp.123-154, 1984.
DOI : 10.1016/0004-3702(84)90008-0

J. L. Ambite, C. A. Knoblock, and S. Minton, Learning Plan Rewriting Rules, 2000.

J. Ambros-ingerson and S. Steel, Integrating Planning, Execution and Monitoring, 1988.

M. Araya-lopez, V. Thomas, O. Buffet, and F. Charpillet, A Closer Look at MOMDPs, 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, 2010.
DOI : 10.1109/ICTAI.2010.101

URL : https://hal.archives-ouvertes.fr/inria-00535559

B. D. Argall, S. Chernova, M. M. Veloso, and B. Browning, A survey of robot learning from demonstration, Robotics and Autonomous Systems, vol.57, issue.5, pp.469-483, 2009.
DOI : 10.1016/j.robot.2008.10.024

J. A. Baier, B. Mombourquette, and S. Mcilraith, Diagnostic Problem Solving: A Planning Perspective, pp.1-10, 2014.

T. Bailey and H. Durrant-whyte, Simultaneous localization and mapping (SLAM): part II, IEEE Robotics & Automation Magazine, vol.13, issue.3, pp.108-117, 2006.
DOI : 10.1109/MRA.2006.1678144

M. Barbier, J. Gabard, J. H. Llareus, and C. Tessier, Implementation and Flight testing of an onboard architecture for mission supervision, Bristol International Unmanned Air Vehicle Systems Conference, 2006.

A. G. Barto, S. J. Bradtke, and S. P. Singh, Learning to act using real-time dynamic programming, Artificial Intelligence, vol.72, issue.1-2, pp.81-138, 1995.
DOI : 10.1016/0004-3702(94)00011-O

M. Beetz, Structured reactive controllers, Proceedings of the third annual conference on Autonomous Agents , AGENTS '99, pp.228-235, 1999.
DOI : 10.1145/301136.301201

M. Beetz and D. Mcdermott, Declarative goals in reactive plans, 1992.

M. Beetz and D. Mcdermott, Improving Robot Plans During Their Execution, 1994.

M. Beetz and D. Mcdermott, Expressing transformations of structured reactive plans, 1997.
DOI : 10.1007/3-540-63912-8_76

M. Beetz, L. Mösenlechner, and M. Tenorth, CRAM — A Cognitive Robot Abstract Machine for everyday manipulation in human environments, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010.
DOI : 10.1109/IROS.2010.5650146

B. Lamine, K. Kabanza, and F. , Reasoning about Robot Actions: A Model Checking Approach Advances in Plan-Based Control of Robotic Agents, pp.123-139, 2002.

D. Bernard, E. Gamble, N. Rouquette, . Smith, Y. Tung et al., Remote agent experiment ds1 technology validation report, 2000.

S. Bernardini and D. E. Smith, Finding Mutual Exclusion Invariants in Temporal Planning Domains, 2011.

J. Bidot, L. Karlsson, F. Lagriffoul, and A. Saffiotti, Geometric Backtracking for Combined Task and Path Planning in Robotic Systems, 2014.

C. M. Bishop, Pattern Recognition and Machine Learning, 2006.

R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D. P. Miller et al., Experiences with an Architecture for Intelligent, Reactive Agents. JETAI, vol.9, issue.23, pp.237-256, 1997.

B. Bonet and H. Geffner, Learning Depth-First Search: A Unified Approach to Heuristic Search in Deterministic and Non-Deterministic Settings, and Its Application to MDPs, 2006.

B. Bonet and H. Geffner, Learning in Depth-First Search: A Unified Approach to Heuristic Search in Deterministic, Non-Deterministic, Probabilistic, and Game Tree Settings, 2006.

A. Bouguerra, L. Karlsson, and A. Saffiotti, Semantic Knowledge-Based Execution Monitoring for Mobile Robots, Proceedings 2007 IEEE International Conference on Robotics and Automation, pp.3693-3698, 2007.
DOI : 10.1109/ROBOT.2007.364044

C. Boutilier, T. Dean, and S. Hanks, Decision-Theoretic Planning: Structural Assumptions and Computational Leverage, pp.1-94, 1999.

N. Bredeche, Y. Chevaleyre, J. Zucker, A. Drogoul, and G. Sabah, A meta-learning approach to ground symbols from visual percepts, Robotics and Autonomous Systems, vol.43, issue.2-3, pp.149-162, 2003.
DOI : 10.1016/S0921-8890(02)00356-1

M. Brenner and B. Nebel, Continual planning and acting in dynamic multiagent environments, Autonomous Agents and Multi-Agent Systems, vol.10, issue.3???4, pp.297-331, 2009.
DOI : 10.1007/s10458-009-9081-1

R. A. Brooks, A robust layered control system for a mobile robot, IEEE Journal on Robotics and Automation, vol.2, issue.1, pp.14-23, 1986.
DOI : 10.1109/JRA.1986.1087032

D. Burfoot, J. Pineau, and G. Dudek, RRT-plan: a randomized algorithm for strips planning, pp.362-365, 2006.

W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer et al., The interactive museum tour-guide robot, pp.11-18, 1998.

L. Busoniu, R. Munos, D. Schutter, B. Babuska, and R. , Optimistic planning for sparsely stochastic systems, 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pp.48-55, 2011.
DOI : 10.1109/ADPRL.2011.5967375

URL : https://hal.archives-ouvertes.fr/hal-00830125

S. Cambon, R. Alami, and F. Gravot, A Hybrid Approach to Intricate Motion, Manipulation and Task Planning, The International Journal of Robotics Research, vol.28, issue.1, pp.104-126, 2009.
DOI : 10.1177/0278364908097884

A. Carbone, A. Finzi, A. Orlandini, and F. Pirri, Model-based control architecture for attentive robots in??rescue??scenarios, Autonomous Robots, vol.4, issue.24, pp.87-120, 2007.
DOI : 10.1007/s10514-007-9055-6

A. Ceballos, S. Bensalem, A. Cesta, L. De-silva, S. Fratini et al., A Goal-Oriented Autonomous Controller for Space Exploration, 2011.

A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and E. Tronci, Validation and verification issues in a timeline-based planning system, The Knowledge Engineering Review, vol.180, issue.03, pp.299-318, 2010.
DOI : 10.1023/A:1025842019552

R. Chatilla, R. Alami, B. Degallaix, and H. Laruelle, Integrated planning and execution control of autonomous robot actions, Proceedings 1992 IEEE International Conference on Robotics and Automation, 1992.
DOI : 10.1109/ROBOT.1992.219999

F. Chaumette and S. Hutchinson, Visual Servoing and Visual Tracking, pp.563-583, 2008.
DOI : 10.1007/978-3-540-30301-5_25

URL : https://hal.archives-ouvertes.fr/hal-00920414

S. Chernova and A. L. Thomaz, Robot Learning from Human Teachers. Synthesis Lectures on AI and ML, 2014.

S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau, Using Iterative Repair to Improve the Responsiveness of Planning and Scheduling, 2000.

J. Choi and E. Amir, Combining planning and motion planning, 2009 IEEE International Conference on Robotics and Automation, 2009.
DOI : 10.1109/ROBOT.2009.5152872

H. Choset and K. Nagatani, Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization, IEEE Transactions on Robotics and Automation, vol.17, issue.2, pp.125-137, 2001.
DOI : 10.1109/70.928558

J. Claßen, G. Röger, G. Lakemeyer, and B. Nebel, Platas???Integrating Planning and the Action Language Golog, KI - K??nstliche Intelligenz, vol.12, issue.2, pp.61-67, 2012.
DOI : 10.1007/s13218-011-0155-2

A. Coates, P. Abbeel, and A. Y. Ng, Apprenticeship learning for helicopter control, Communications of the ACM, vol.52, issue.7, pp.97-105, 2009.
DOI : 10.1145/1538788.1538812

A. Coles, M. Fox, D. Long, and . Smith, Planning with Problems Requiring Temporal Coordination, pp.892-897, 2008.

A. Coles and . Smith, Marvin: A heuristic search planner with online macro-action learning, JAIR, vol.28, pp.119-156, 2007.

A. J. Coles, A. Coles, M. Fox, and D. Long, COLIN: Planning with Continuous Linear Numeric Change, pp.1-96, 2012.

P. Conrad, J. Shah, and B. C. Williams, Flexible execution of plans with choice, 2009.

P. Conrad and B. C. Williams, Drake: An Efficient Executive for Temporal Plans with Choice, 2011.

S. Coradeschi and A. Saffiotti, Perceptual anchoring: a key concept for plan execution in embedded systems Advances in Plan-Based Control of Robotic Agents, pp.89-105, 2002.

S. Coradeschi and A. Saffiotti, An introduction to the anchoring problem, Robotics and Autonomous Systems, vol.43, issue.2-3, pp.85-96, 2003.
DOI : 10.1016/S0921-8890(03)00021-6

E. Coste-maniere, B. Espiau, and E. Rutten, A task-level robot programming language and its reactive execution, Proceedings 1992 IEEE International Conference on Robotics and Automation, 1992.
DOI : 10.1109/ROBOT.1992.219990

T. Dean and K. Kanazawa, A model for reasoning about persistence and causation, Computational Intelligence, vol.4, issue.2, pp.142-150, 1989.
DOI : 10.1016/0004-3702(87)90012-9

R. Dearden, N. Friedman, and D. Andre, Model based Bayesian exploration, pp.150-159, 1999.

R. Dechter, I. Meiri, and J. Pearl, Temporal constraint networks, Temporal constraint networks, pp.61-95, 1991.
DOI : 10.1016/0004-3702(91)90006-6

O. Despouys and F. Ingrand, Propice-Plan: Toward a Unified Framework for Planning and Execution, 1999.
DOI : 10.1007/10720246_22

T. Dietterich, Hierarchical reinforcement learning with MAXQ value function, JAIR, vol.13, pp.227-303, 2000.

P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg et al., The WITAS unmanned aerial vehicle project, pp.747-755, 2000.

P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom et al., A Distributed Architecture for Autonomous Unmanned Aerial Vehicle Experimentation, 2004.
DOI : 10.1007/978-4-431-35873-2_23

P. Doherty, J. Kvarnström, F. Heintz, and . Feb, A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems, Autonomous Agents and Multi-Agent Systems, vol.18, issue.1???2, pp.332-377, 2009.
DOI : 10.1007/s10458-009-9079-8

C. Domshlak, E. Karpas, and S. Markovitch, Online Speedup Learning for Optimal Planning, JAIR, vol.44, pp.709-755, 2012.

C. Dousson, P. Gaborit, and M. Ghallab, Situation recognition: Representation and algorithms, IJCAI, vol.13, pp.166-166, 1993.

C. Dousson, L. Maigat, and P. , Chronicle Recognition Improvement Using Temporal Focusing and Hierarchization, 2007.

S. D?eroski, L. De-raedt, and K. Driessens, Relational reinforcement learning, Machine Learning, vol.43, issue.1, pp.7-52, 2001.
DOI : 10.1007/BFb0027307

R. T. Effinger, B. C. Williams, and A. Hofmann, Dynamic Execution of Temporally and Spatially Flexible Reactive Programs, AAAI Workshop: Bridging the Gap between Task and Motion Planning, pp.1-8, 2010.

T. Estlin, D. Gaines, C. Chouinard, R. Castano, B. Bornstein et al., Increased Mars Rover Autonomy using AI Planning, Scheduling and Execution, Proceedings 2007 IEEE International Conference on Robotics and Automation, pp.4911-4918, 2007.
DOI : 10.1109/ROBOT.2007.364236

F. Fernández, J. García, and M. M. Veloso, Probabilistic Policy Reuse for inter-task transfer learning, Robotics and Autonomous Systems, vol.58, issue.7, pp.866-871, 2010.
DOI : 10.1016/j.robot.2010.03.007

A. Ferrein and G. Lakemeyer, Logic-based robot control in highly dynamic domains, Robotics and Autonomous Systems, vol.56, issue.11, pp.980-991, 2008.
DOI : 10.1016/j.robot.2008.08.010

M. Fichtner, A. Großmann, and M. Thielscher, Intelligent execution monitoring in dynamic environments, Fundamenta Informaticae, vol.57, pp.2-4, 2003.

R. E. Fikes, Monitored Execution of Robot Plans Produced by STRIPS, 1971.

A. Finzi, F. Ingrand, and N. Muscettola, Model-based executive control through reactive planning for autonomous rovers, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 2004.
DOI : 10.1109/IROS.2004.1389463

R. J. Firby, An investigation into reactive planning in complex domains, 1987.

S. Fleury, M. Herrb, and R. Chatilla, GenoM: A Tool for the Specification and the Implementation of Operating Modules in a Distributed Robot Architecture, pp.842-848, 1997.

M. Fox, A. Gerevini, D. Long, and I. Serina, Plan stability: Replanning versus plan repair, 2006.

M. Fox, M. Ghallab, G. Infantes, and D. Long, Robot introspection through learned hidden Markov models, Artificial Intelligence, vol.170, issue.2, pp.59-113, 2006.
DOI : 10.1016/j.artint.2005.05.007

J. Frank and A. K. Jónsson, Constraint-Based Attribute and Interval Planning, Constraints, vol.8, issue.4, 2003.

G. Fraser, G. Steinbauer, and F. Wotawa, Plan Execution in Dynamic Environments, In: Lecture Notes in Computer Science. Innovations in Applied Artificial Intelligence, pp.208-217, 2005.
DOI : 10.1007/11504894_30

S. Fratini, A. Cesta, R. De-benedictis, A. Orlandini, and R. Rasconi, APSI-based deliberation in Goal Oriented Autonomous Controllers, 2011.

F. Fusier, V. Valentin, F. Bremond, M. Thonnat, M. Borg et al., Video understanding for complex activity recognition, Machine Vision and Applications, vol.19, issue.7, pp.3-4, 2007.
DOI : 10.1007/s00138-006-0054-y

URL : https://hal.archives-ouvertes.fr/inria-00276936

C. Galindo, J. Fernandez-madrigal, J. Gonzalez, and A. Saffiotti, Robot task planning using semantic maps, Robotics and Autonomous Systems, vol.56, issue.11, pp.955-966, 2008.
DOI : 10.1016/j.robot.2008.08.007

C. Galindo, J. Fernandez-madrigal, J. Gonzalez, A. Saffiotti, and P. Buschka, Life-Long Optimization of the Symbolic Model of Indoor Environments for a Mobile Robot, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.37, issue.5, pp.1290-1304, 2007.
DOI : 10.1109/TSMCB.2007.900074

E. Gat, On Three-Layer Architectures, Artificial Intelligence and Mobile Robots, 1997.

H. Geffner and B. Bonet, A Concise Introduction to Models and Methods for Automated Planning, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.7, issue.2, 2013.
DOI : 10.2200/S00513ED1V01Y201306AIM022

C. Geib and R. P. Goldman, A probabilistic plan recognition algorithm based on plan tree grammars, Artificial Intelligence, vol.173, issue.11, pp.1101-1132, 2009.
DOI : 10.1016/j.artint.2009.01.003

M. Ghallab, On Chronicles: Representation, On-line Recognition and Learning, pp.597-606, 1996.

M. Ghallab and H. Laruelle, Representation and Control in IxTeT, a Temporal Planner, pp.61-67, 1994.

M. Ghallab and A. Mounir-alaoui, Managing Efficiently Temporal Relations Through Indexed Spanning Trees, 1989.

M. Ghallab, D. S. Nau, and P. Traverso, Automated Planning: Theory and Practice, 2004.

M. Ghallab, D. S. Nau, and P. Traverso, The actor??s view of automated planning and acting: A position paper, Artificial Intelligence, vol.208, pp.1-17, 2014.
DOI : 10.1016/j.artint.2013.11.002

A. Gosavi, Reinforcement Learning: A Tutorial Survey and Recent Advances, INFORMS Journal on Computing, vol.21, issue.2, pp.178-192, 2009.
DOI : 10.1287/ijoc.1080.0305

D. Hähnel, W. Burgard, and G. Lakemeyer, GOLEX?bridging the gap between logic (GOLOG) and a real robot, In: KI Advances in Artificial Intelligence, pp.165-176, 1998.

E. A. Hansen and S. Zilberstein, LAO???: A heuristic search algorithm that finds solutions with loops, Artificial Intelligence, vol.129, issue.1-2, pp.35-62, 2001.
DOI : 10.1016/S0004-3702(01)00106-0

R. Hartanto and J. Hertzberg, Fusing DL Reasoning with HTN Planning, KI: Advances in Artificial Intelligence, pp.62-69, 2008.

K. Hauser and J. Latombe, Integrating task and PRM motion planning: Dealing with many infeasible motion planning queries, ICAPS Workshop on Bridging the gap between task and motion planning, 2009.

M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier, Hierarchical solution of Markov decision processes using macro-actions, pp.220-229, 1998.

N. Hawes, A survey of motivation frameworks for intelligent systems, Artificial Intelligence, vol.175, issue.5-6, pp.1020-1036, 2011.
DOI : 10.1016/j.artint.2011.02.002

F. Heintz, J. Kvarnström, and P. Doherty, Bridging the sense-reasoning gap: DyKnow ??? Stream-based middleware for knowledge processing, Advanced Engineering Informatics, vol.24, issue.1, pp.14-26, 2010.
DOI : 10.1016/j.aei.2009.08.007

M. Helmert, Concise finite-domain representations for PDDL planning tasks, Artificial Intelligence, vol.173, issue.5-6, pp.5-6, 2009.
DOI : 10.1016/j.artint.2008.10.013

S. Hongeng, R. Nevatia, and F. Bremond, Video-based event recognition: activity representation and probabilistic recognition methods, Computer Vision and Image Understanding, vol.96, issue.2, pp.129-162, 2004.
DOI : 10.1016/j.cviu.2004.02.005

G. Infantes, M. Ghallab, and F. Ingrand, Learning the behavior model of a robot, Autonomous Robots, vol.32, issue.3, pp.1-21, 2010.
DOI : 10.1007/s10514-010-9212-1

M. D. Ingham, R. J. Ragno, and B. C. Williams, A Reactive Model-based Programming Language for Robotic Space Explorers, 2001.

F. Ingrand, R. Chatilla, R. Alami, and F. Robert, PRS: a high level supervision and control language for autonomous mobile robots, Proceedings of IEEE International Conference on Robotics and Automation, pp.43-49, 1996.
DOI : 10.1109/ROBOT.1996.503571

F. Ingrand and M. Ghallab, Robotics and Artificial Intelligence: a Perspective on Deliberation Functions, AI Communications, vol.27, issue.1, pp.63-80, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01138117

F. Ingrand, S. Lacroix, S. Lemai-chenevier, and F. Py, Decisional autonomy of planetary rovers, Journal of Field Robotics, vol.2, issue.7, pp.559-580, 2007.
DOI : 10.1002/rob.20206

S. Jiménez, T. De-la-rosa, S. Fernández, F. Fernández, and D. Borrajo, A review of machine learning for automated planning, The Knowledge Engineering Review, vol.33, issue.04, pp.433-467, 2012.
DOI : 10.1016/S0004-3702(02)00246-1

A. K. Jónsson, P. H. Morris, N. Muscettola, K. Rajan, and B. D. Smith, Planning in Interplanetary Space: Theory and Practice, pp.177-186, 2000.

K. Judah, A. P. Fern, and T. G. Dietterich, Active Imitation Learning via Reduction to IID Active Learning, pp.428-437, 2012.

L. P. Kaelbling, M. L. Littman, and A. W. Moore, Reinforcement Learning: A Survey, 1996.

L. P. Kaelbling and T. Lozano-perez, Hierarchical task and motion planning in the now, 2011 IEEE International Conference on Robotics and Automation, pp.1470-1477, 2011.
DOI : 10.1109/ICRA.2011.5980391

O. Kanoun, J. Laumond, and E. Yoshida, Planning foot placements for a humanoid robot: A problem of inverse kinematics, The International Journal of Robotics Research, vol.24, issue.5, pp.476-485, 2011.
DOI : 10.1177/0278364910371238

L. Karlsson, A. Bouguerra, M. Broxvall, S. Coradeschi, and A. Saffiotti, To Secure an Anchor ? A recovery planning approach to ambiguity in perceptual anchoring, AI Communications, vol.21, issue.1, pp.1-14, 2008.

H. A. Kautz and J. F. Allen, Generalized plan recognition, pp.32-37, 1986.

M. Kearns, Y. Mansour, and A. Y. Ng, A sparse sampling algorithm for near-optimal planning in large Markov decision processes, Machine Learning, vol.49, issue.2/3, pp.193-208, 2002.
DOI : 10.1023/A:1017932429737

A. Khoo and I. Horswill, Grounding inference in distributed multi-robot environments, Robotics and Autonomous Systems, vol.43, issue.2-3, pp.121-132, 2003.
DOI : 10.1016/S0921-8890(02)00354-8

R. Knight, G. Rabideau, S. Chien, B. Engelhardt, and R. Sherwood, Casper: space exploration through continuous planning, Intelligent Systems, IEEE, vol.16, issue.5, pp.70-75, 2001.

J. Kober, J. A. Bagnell, and J. Peters, Reinforcement Learning in Robotics: A Survey, IJRR, vol.32, issue.11, pp.1238-1274, 2013.

J. Kober and J. Peters, Policy search for motor primitives in robotics, Machine Learning, vol.8, issue.2, pp.171-203, 2011.
DOI : 10.1007/s10994-010-5223-6

A. Kolobov, . Mausam, and D. Weld, SixthSense: Fast and Reliable Recognition of Dead Ends in MDPs, 2010.

A. Kolobov, . Mausam, D. Weld, and H. Geffner, Heuristic search for generalized stochastic shortest path MDPs, 2011.

K. Konolige, E. Marder-eppstein, and B. Marthi, Navigation in hybrid metric-topological maps, 2011 IEEE International Conference on Robotics and Automation, 2011.
DOI : 10.1109/ICRA.2011.5980074

K. Konolige, K. L. Myers, E. H. Ruspini, and A. Saffiotti, The Saphira architecture: a design for autonomy, Journal of Experimental & Theoretical Artificial Intelligence, vol.14, issue.2-3, pp.215-235, 1997.
DOI : 10.1007/978-1-4615-4022-9

D. Kortenkamp and R. Simmons, Robotic Systems Architectures and Programming, pp.187-206, 2008.

O. Kroemer and J. Peters, Active exploration for robot parameter selection in episodic reinforcement learning, 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pp.25-31, 2011.
DOI : 10.1109/ADPRL.2011.5967378

V. Krüger, D. Kragic, A. Ude, and C. Geib, The meaning of action: a review on action recognition and mapping, Advanced Robotics, vol.21, issue.13, pp.1473-1501, 2007.

T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, Human-aware robot navigation: A survey, Robotics and Autonomous Systems, vol.61, issue.12, pp.1726-1743, 2013.
DOI : 10.1016/j.robot.2013.05.007

B. Kuipers and Y. Byun, A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations, Robotics and Autonomous Systems, vol.8, issue.1-2, pp.47-63, 1991.
DOI : 10.1016/0921-8890(91)90014-C

B. Kuipers, J. Modayil, P. Beeson, M. Macmahon, and F. Savelli, Local metrical and global topological maps in the hybrid spatial semantic hierarchy, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, pp.4845-4851, 2004.
DOI : 10.1109/ROBOT.2004.1302485

J. Kvarnström and P. Doherty, TALplanner: A temporal logic based forward chaining planner, Annals of Mathematics and Artificial Intelligence, vol.30, issue.1/4, pp.119-169, 2000.
DOI : 10.1023/A:1016619613658

K. Lamine and F. Kabanza, History checking of temporal fuzzy logic formulas for monitoring behavior-based mobile robots, Proceedings 12th IEEE Internationals Conference on Tools with Artificial Intelligence. ICTAI 2000, 2000.
DOI : 10.1109/TAI.2000.889888

C. Laporte and T. Arbel, Efficient Discriminant Viewpoint Selection for Active Bayesian Recognition, International Journal of Computer Vision, vol.68, issue.3, pp.267-287, 2006.
DOI : 10.1007/s11263-005-4436-9

S. M. Lavalle, Planning Algorithms, 2006.
DOI : 10.1017/CBO9780511546877

S. Lemai-chenevier and F. Ingrand, Interleaving Temporal Planning and Execution in Robotics Domains, 2004.

S. Lemaignan, R. R. Espinoza, L. Mösenlechner, R. Alami, and M. Beetz, ORO, a knowledge management platform for cognitive architectures in robotics, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010.
DOI : 10.1109/IROS.2010.5649547

H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl, GOLOG: A logic programming language for dynamic domains, The Journal of Logic Programming, vol.31, issue.1-3, pp.59-83, 1997.
DOI : 10.1016/S0743-1066(96)00121-5

S. J. Levine and B. C. Williams, Concurrent Plan Recognition and Execution for Human-Robot Teams, 2014.

M. Likhachev, G. Gordon, and S. Thrun, Planning for markov decision processes with sparse stochasticity, Advances in Neural Information Processing Systems (NIPS) 17, 2004.

D. Magazzeni, F. Py, M. Fox, D. Long, and K. Rajan, Policy learning for autonomous feature tracking, Autonomous Robots, vol.28, issue.4, pp.47-69, 2013.
DOI : 10.1007/s10514-013-9375-7

S. Magnenat, J. C. Chappelier, and F. Mondada, Integration of Online Learning into HTN Planning for Robotic Tasks, 2012.

B. M. Marthi, L. P. Kaelbling, and T. Lozano-perez, Learning hierarchical structure in policies, 2007.

R. Martinez-cantin, N. Freitas, E. Brochu, J. Castellanos, and A. Doucet, A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot, Autonomous Robots, vol.44, issue.3, pp.93-103, 2009.
DOI : 10.1007/s10514-009-9130-2

K. Mausam and A. , Planning with Markov Decision Processes: An AI Perspective, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.6, issue.1, 2012.
DOI : 10.2200/S00426ED1V01Y201206AIM017

C. Mcgann, F. Py, K. Rajan, R. Henthorn, and R. Mcewen, A deliberative architecture for AUV control, 2008 IEEE International Conference on Robotics and Automation, pp.1049-1054, 2008.
DOI : 10.1109/ROBOT.2008.4543343

C. Mericli, M. M. Veloso, and H. L. Akin, Efficient task execution and refinement through multi-resolution corrective demonstration, 2012 IEEE International Conference on Robotics and Automation, pp.423-435, 2012.
DOI : 10.1109/ICRA.2012.6225294

T. B. Moeslund, A. Hilton, and V. Krüger, A survey of advances in vision-based human motion capture and analysis, Computer Vision and Image Understanding, vol.104, issue.2-3, pp.90-126, 2006.
DOI : 10.1016/j.cviu.2006.08.002

M. Molineaux, M. Klenk, and D. Aha, Goal-driven autonomy in a Navy strategy simulation, pp.1548-1554, 2010.

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges, pp.1151-1156, 2003.

B. Morisset and M. Ghallab, Learning how to combine sensory-motor functions into a robust behavior, Artificial Intelligence, vol.172, issue.4-5, pp.4-5, 2008.
DOI : 10.1016/j.artint.2007.07.003

P. H. Morris and N. Muscettola, Temporal Dynamic Controllability Revisited, In: AAAI. pp, pp.1193-1198, 2005.

P. H. Morris, N. Muscettola, and T. Vidal, Dynamic Control of Plans with Temporal Uncertainty, pp.494-502, 2001.

N. Muscettola, G. Dorais, C. Fry, R. Levinson, and C. Plaunt, A Unified Approach to Model-Based Planning and Execution, 2000.

N. Muscettola, G. Dorais, C. Fry, R. Levinson, and C. Plaunt, IDEA: Planning at the Core of Autonomous Reactive Agents, 2002.

N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams, Remote Agent: to boldly go where no AI system has gone before, Artificial Intelligence, vol.103, issue.1-2, pp.5-47, 1998.
DOI : 10.1016/S0004-3702(98)00068-X

K. L. Myers, A procedural knowledge approach to task-level control, 1996.

K. L. Myers, CPEF: Continuous Planning and Execution Framework, AI Magazine, vol.20, issue.4, pp.63-69, 1999.

B. Nebel and J. Koehler, Plan reuse versus plan generation: a theoretical and empirical analysis, Artificial Intelligence, vol.76, issue.1-2, pp.427-454, 1995.
DOI : 10.1016/0004-3702(94)00082-C

M. A. Newton, J. Levine, M. Fox, and D. Long, Learning macro-actions for arbitrary planners and domains, 2007.

A. Ng and S. J. Russel, Algorithms for inverse reinforcement learning, International Conference on Machine Learning, pp.1-8, 2000.

D. Nguyen-tuong and J. Peters, Model learning for robot control: a survey, Cognitive Processing, vol.11, issue.11, pp.319-340, 2011.
DOI : 10.1007/s10339-011-0404-1

M. Nilsson, J. Kvarnström, and P. Doherty, Incremental Dynamic Controllability in Cubic Worst-Case Time, 2014 21st International Symposium on Temporal Representation and Reasoning, 2014.
DOI : 10.1109/TIME.2014.13

S. C. Ong, S. W. Png, D. Hsu, and W. S. Lee, Planning under Uncertainty for Robotic Tasks with Mixed Observability, The International Journal of Robotics Research, vol.21, issue.3, pp.1053-1068, 2010.
DOI : 10.1177/0278364910369861

F. Pecora, M. Cirillo, F. Dell-'osa, J. Ullberg, and A. Saffiotti, A constraint-based approach for proactive, context-aware human support, Journal of Ambient Intelligence and Smart Environments, vol.4, issue.4, pp.347-367, 2012.

R. Petrick and F. Bacchus, Extending the Knowledge-Based approach to Planning with Incomplete Information and Sensing, pp.2-11, 2004.

O. Pettersson, Execution monitoring in robotics: A survey, Robotics and Autonomous Systems, vol.53, issue.2, pp.73-88, 2005.
DOI : 10.1016/j.robot.2005.09.004

O. Pettersson, L. Karlsson, and A. Saffiotti, Model-free execution monitoring in behavior-based mobile robotics, 2003.

J. Pineau, M. Montemerlo, M. E. Pollack, N. Roy, and S. Thrun, Towards robotic assistants in nursing homes: Challenges and results, Robotics and Autonomous Systems, vol.42, issue.3-4, pp.3-4, 2003.
DOI : 10.1016/S0921-8890(02)00381-0

E. Plaku and G. Hager, Sampling-Based Motion and Symbolic Action Planning with geometric and differential constraints, 2010 IEEE International Conference on Robotics and Automation, 2009.
DOI : 10.1109/ROBOT.2010.5509563

M. E. Pollack and J. Horty, There's more to life than making plans: plan management in dynamic, multiagent environments, AI Magazine, vol.20, issue.4, p.71, 1999.

J. Powell, M. Molineaux, and D. Aha, Active and Interactive Discovery of Goal Selection Knowledge, 2011.

S. Prentice and N. Roy, The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance, The International Journal of Robotics Research, vol.2, issue.2, pp.11-12, 2009.
DOI : 10.1177/0278364909341659

F. Py, K. Rajan, and C. Mcgann, A Systematic Agent Framework for Situated Autonomous Systems, pp.583-590, 2010.

D. V. Pynadath and M. P. Wellman, Probabilistic State-Dependent Grammars for Plan Recognition, pp.507-514, 2000.

G. Rabideau, R. Knight, S. Chien, A. Fukunaga, and A. Govindjee, Iterative Repair Planning for Spacecraft Operations in the ASPEN System, 1999.

L. Rabiner and B. H. Juang, An introduction to hidden Markov models, IEEE ASSP Magazine, vol.3, issue.1, pp.4-16, 1986.
DOI : 10.1109/MASSP.1986.1165342

K. Rajan and F. Py, T-REX: partitioned inference for AUV mission control, Further Advances in Unmanned Marine Vehicles, pp.171-199, 2012.
DOI : 10.1049/PBCE077E_ch9

K. Rajan, F. Py, and J. Barreiro, Towards Deliberative Control in Marine Robotics, pp.91-175, 2012.
DOI : 10.1007/978-1-4614-5659-9_3

M. Ramirez and H. Geffner, Probabilistic plan recognition using off-the-shelf classical planners, pp.1121-1126, 2010.

A. Ranganathan and F. Dellaert, Semantic Modeling of Places using Objects, Robotics: Science and Systems III, pp.27-30, 2007.
DOI : 10.15607/RSS.2007.III.001

A. Ranganathan and F. Dellaert, Online probabilistic topological mapping, The International Journal of Robotics Research, vol.17, issue.6, pp.755-771, 2011.
DOI : 10.1002/(SICI)1097-4563(199702)14:2<107::AID-ROB5>3.0.CO;2-W

J. Rintanen, An Iterative Algorithm for Synthesizing Invariants, pp.806-811, 2000.

S. Rosenthal, M. M. Veloso, and A. K. Dey, Task Behavior and Interaction Planning for a Mobile Service Robot that Occasionally Requires Help, AAAI WS: Automated Action Planning for Autonomous Mobile Robots, 2011.

W. Ruml, M. B. Do, R. Zhou, and M. P. Fromherz, On-line planning and scheduling: An application to controlling modular printers, JAIR, vol.40, issue.1, pp.415-468, 2011.

S. J. Russel and P. Norvig, Statistical Learning Methods. In: Artificial Intelligence: A Modern Approach, 2007.

M. Samadi, T. Kollar, and M. M. Veloso, Using the web to interactively learn to find objects, pp.2074-2080, 2012.

E. Sandewall, Features and Fluents, 1995.

P. H. Santana and B. C. Williams, Chance-Constrained Consistency for Probabilistic Temporal Plan Networks, 2014.

P. W. Schermerhorn, J. F. Kramer, C. Middendorff, and M. Scheutz, DIARC: A Testbed for Natural Human-Robot Interaction, pp.1972-1973, 2006.

M. J. Schoppers, Universal plans for reactive robots in unpredictable environments, 1987.

L. P. Selen, M. N. Shadlen, and D. M. Wolpert, Deliberation in the Motor System: Reflex Gains Track Evolving Evidence Leading to a Decision, Journal of Neuroscience, vol.32, issue.7, pp.2276-2286, 2012.
DOI : 10.1523/JNEUROSCI.5273-11.2012

S. C. Shapiro and H. O. Ismail, Anchoring in a grounded layered architecture with integrated reasoning, Robotics and Autonomous Systems, vol.43, issue.2-3, pp.97-108, 2003.
DOI : 10.1016/S0921-8890(02)00352-4

O. Sigaud and J. Peters, From Motor Learning to Interaction Learning in Robots, of Studies in Computational Intelligence, 2010.

T. Siméon, J. Laumond, J. Cortés, and A. Sahbani, Manipulation Planning with Probabilistic Roadmaps, The International Journal of Robotics Research, vol.23, issue.7-8, pp.7-8, 2004.
DOI : 10.1177/0278364904045471

R. Simmons, Concurrent planning and execution for autonomous robots, IEEE Control Systems, vol.12, issue.1, pp.46-50, 1992.
DOI : 10.1109/37.120453

R. Simmons, Structured control for autonomous robots, IEEE Transactions on Robotics and Automation, vol.10, issue.1, pp.34-43, 1994.
DOI : 10.1109/70.285583

R. Simmons and D. Apfelbaum, A task description language for robot control, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190), 1931.
DOI : 10.1109/IROS.1998.724883

D. E. Smith and D. Weld, Temporal Planning with Mutual Exclusion Reasoning, 1999.

M. Sridharan, J. L. Wyatt, and R. Dearden, HiPPo: Hierarchical POMDPs for Planning Information Processing and Sensing Actions on a Robot, pp.346-354, 2008.

F. Stulp and M. Beetz, Refining the execution of abstract actions with learned action models, JAIR, vol.32, issue.1, pp.487-523, 2008.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, 1998.
DOI : 10.1109/TNN.1998.712192

F. Teichteil-königsbuch, U. Kuter, and G. Infantes, Incremental plan aggregation for generating policies in MDPs, 2010.

F. Teichteil-königsbuch, C. Lesire, and G. Infantes, A generic framework for anytime execution-driven planning in robotics, 2011 IEEE International Conference on Robotics and Automation, 2011.
DOI : 10.1109/ICRA.2011.5980289

M. Tenorth and M. Beetz, KnowRob: A knowledge processing infrastructure for cognition-enabled robots, The International Journal of Robotics Research, vol.56, issue.2, pp.566-590, 2013.
DOI : 10.1142/S0218213012500121

S. Thrun, Robotic Mapping: A Survey Exploring Artificial Intelligence in the New Millenium, 2002.

H. Tonino, A. Bos, M. De-weerdt, and C. Witteveen, Plan coordination by revision in collective agent based systems, Artificial Intelligence, vol.142, issue.2, pp.121-145, 2002.
DOI : 10.1016/S0004-3702(02)00273-4

F. W. Trevizan, M. M. Veloso, and M. De-weerdt, Short-sighted stochastic shortest path problems Plan repair as an extension of planning, 2005.

S. Vattam, M. Klenk, M. Molineaux, and D. W. Aha, Breadth of Approaches to Goal Reasoning: A Research Survey, Annual Conference on Advances in Cognitive Systems: Workshop on Goal Reasoning, 2013.

J. Velez, G. Hemann, A. Huang, I. Posner, and N. Roy, Planning to perceive: Exploiting mobility for robust object detection, 2011.

M. M. Veloso and P. Rizzo, Mapping planning actions and partially-ordered plans into execution knowledge, Workshop on Integrating Planning, Scheduling and Execution in Dynamic and Uncertain Environments, pp.94-97, 1998.

V. Verma, T. Estlin, A. K. Jónsson, C. Pasareanu, R. Simmons et al., Plan execution interchange language (PLEXIL) for executable plans and command sequences, 2005.

T. Vidal and M. Ghallab, Dealing with uncertain durations in temporal constraints networks dedicated to planning, pp.48-52, 1996.

T. J. Walsh, S. Goschin, and M. L. Littman, Integrating sample-based planning and model-based reinforcement learning, 2010.

T. J. Walsh and M. L. Littman, Efficient learning of action schemas and web-service descriptions, 2008.

F. Y. Wang, K. J. Kyriakopoulos, A. Tsolkas, and G. N. Saridis, A Petri-net coordination model for an intelligent mobile robot, IEEE Transactions on Systems, Man, and Cybernetics, vol.21, issue.4, pp.777-789, 1991.
DOI : 10.1109/21.108296

D. E. Wilkins, Practical Planning. Extending the Classical AI Planning Paradigm, 1988.

D. E. Wilkins and K. L. Myers, A Common Knowledge Representation for Plan Generation and Reactive Execution, Journal of Logic and Computation, vol.5, issue.6, pp.731-761, 1995.
DOI : 10.1093/logcom/5.6.731

B. C. Williams and M. Abramson, Executing Reactive, Model-based Programs through Graph-based Temporal Planning, 2001.

B. C. Williams and V. Gupta, Unifying model-based and reactive programming within a model-based executive, 1999.

B. C. Williams and M. D. Ingham, Model-based programming of intelligent embedded systems and robotic space explorers, Proc. of the IEEE: Special Issue on Modeling and Design of Embedded Software, pp.212-237, 2003.
DOI : 10.1109/JPROC.2002.805828

B. C. Williams and P. P. Nayak, A Model-based Approach to Reactive Self-Configuring Systems, pp.971-978, 1996.

B. C. Williams and P. P. Nayak, A reactive planner for a model-based executive, 1997.

A. Wilson, A. Fern, and P. Tadepalli, A Bayesian Approach for Policy Learning from Trajectory Preference Queries Advances in neural information processing systems, pp.1142-1150, 2012.

M. A. Wilson, J. Mcmahon, and D. W. Aha, Bounded Expectations for Discrepancy Detection in Goal-Driven Autonomy, AAAI Workshop on AI and Robotics, 2014.

J. Wolfe, B. Marthi, and S. J. Russel, Combined task and motion planning for mobile manipulation, pp.254-258, 2010.

Y. Wu and T. S. Huang, Vision-Based Gesture Recognition: A Review, Gesture-Based Communication in Human-Computer Interaction, pp.103-115, 1999.
DOI : 10.1007/3-540-46616-9_10

Y. Xu, A. Fern, and S. W. Yoon, Discriminative learning of beam-search heuristics for planning, 2007.

Q. Yang, Intelligent Planning: A Decomposition and Abstraction Based Approach, 1997.
DOI : 10.1007/978-3-642-60618-2

Q. Yang, K. Wu, and Y. Jiang, Learning action models from plan examples using weighted MAX-SAT, Artificial Intelligence, vol.171, issue.2-3, pp.107-143, 2007.
DOI : 10.1016/j.artint.2006.11.005

S. Yoon, A. Fern, and R. Givan, Learning heuristic functions from relaxed plans, 2006.

H. Younes and R. Simmons, VHPOP: Versatile heuristic partial order planner, JAIR, vol.20, issue.1, pp.405-430, 2003.

S. Zickler and M. M. Veloso, Efficient physics-based planning: sampling search via non-deterministic tactics and skills, 2009.

S. Zilberstein, R. Washington, D. S. Bernstein, A. Mouaddib, and . Feb, Decision-Theoretic Control of Planetary Rovers, pp.270-289, 2003.
DOI : 10.1007/3-540-37724-7_16

T. Zimmerman and S. Kambhampati, Learning-Assisted Automated Planning: Looking Back, Taking Stock, Going Forward, AI Magazine, vol.24, issue.2, p.73, 2003.