P. Wright and H. Dyson, Intrinsically disordered proteins in cellular signalling and regulation, Nature Reviews Molecular Cell Biology, vol.106, issue.1, pp.18-29, 2015.
DOI : 10.1038/nrm3920

V. Csizmok, A. Follis, R. Kriwacki, and J. Forman-kay, Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling, Chemical Reviews, vol.116, issue.11, pp.6424-6462, 2016.
DOI : 10.1021/acs.chemrev.5b00548

H. Xie, S. Vucetic, L. Iakoucheva, C. Oldfield, A. Dunker et al., Functional Anthology of Intrinsic Disorder. 1. Biological Processes and Functions of Proteins with Long Disordered Regions, Journal of Proteome Research, vol.6, issue.5, pp.1882-98, 2007.
DOI : 10.1021/pr060392u

P. Tompa, E. Schad, A. Tantos, and L. Kalmar, Intrinsically disordered proteins: emerging interaction specialists, Current Opinion in Structural Biology, vol.35, pp.49-59, 2015.
DOI : 10.1016/j.sbi.2015.08.009

A. Dunker, M. Cortese, P. Romero, L. Iakoucheva, and V. Uversky, Flexible nets. The roles of intrinsic disorder in protein interaction networks, FEBS Journal, vol.14, issue.20, pp.5129-5148, 2005.
DOI : 10.1093/nar/gkh086

P. Kim, A. Sboner, Y. Xia, and M. Gerstein, The role of disorder in interaction networks: a structural analysis, Molecular Systems Biology, vol.4, p.179, 2008.
DOI : 10.1021/pr060392u

H. Dyson and P. Wright, Unfolded Proteins and Protein Folding Studied by NMR, Chemical Reviews, vol.104, issue.8, pp.3607-3622, 2004.
DOI : 10.1021/cr030403s

M. Jensen, R. Ruigrok, and M. Blackledge, Describing intrinsically disordered proteins at atomic resolution by NMR, Current Opinion in Structural Biology, vol.23, issue.3, pp.426-435, 2013.
DOI : 10.1016/j.sbi.2013.02.007

URL : https://hal.archives-ouvertes.fr/hal-01321604

L. Feigin and D. Svergun, Structure analysis by small-angle X-ray and neutron scattering, 1987.
DOI : 10.1007/978-1-4757-6624-0

C. Putnam, M. Hammel, G. Hura, and J. Tainer, X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution, Quarterly Reviews of Biophysics, vol.52, issue.03, pp.191-285, 2007.
DOI : 10.1016/j.str.2007.02.007

D. Jacques and J. Trewhella, Small-angle scattering for structural biology-Expanding the frontier while avoiding the pitfalls, Protein Science, vol.394, issue.4, pp.642-657, 2010.
DOI : 10.1002/pro.351

S. Doniach, Changes in Biomolecular Conformation Seen by Small Angle X-ray Scattering, Chemical Reviews, vol.101, issue.6, pp.1763-1778, 2001.
DOI : 10.1021/cr990071k

P. Bernadó and D. Svergun, Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering, Mol. BioSyst., vol.98, issue.1, pp.151-167, 2012.
DOI : 10.1039/C1MB05275F

V. Receveur-brechot and D. Durand, How Random are Intrinsically Disordered Proteins? A Small Angle Scattering Perspective, Current Protein & Peptide Science, vol.13, issue.1, pp.55-75, 2012.
DOI : 10.2174/138920312799277901

P. Bernadó and M. Blackledge, Structural biology: Proteins in dynamic equilibrium, Nature, vol.5, issue.7327, pp.1046-1048, 2010.
DOI : 10.1038/4681046a

A. Jha, A. Colubri, K. Freed, and T. Sosnick, Statistical coil model of the unfolded state: Resolving the reconciliation problem, Proceedings of the National Academy of Sciences, vol.102, issue.37, pp.13099-13104, 2005.
DOI : 10.1073/pnas.0506078102

P. Bernadó, L. Blanchard, P. Timmins, D. Marion, R. Ruigrok et al., A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering, Proceedings of the National Academy of Sciences, vol.102, issue.47, pp.17002-17007, 2005.
DOI : 10.1073/pnas.0506202102

V. Ozenne, F. Bauer, L. Salmon, J. Huang, M. Jensen et al., Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables, Bioinformatics, vol.28, issue.11, pp.1463-1470, 2012.
DOI : 10.1093/bioinformatics/bts172

A. Vitalis and R. Pappu, ABSINTH: A new continuum solvation model for simulations of polypeptides in aqueous solutions, Journal of Computational Chemistry, vol.21, issue.5, pp.673-699, 2009.
DOI : 10.1002/jcc.21005

R. Best, W. Zheng, and J. Mittal, Balanced Protein???Water Interactions Improve Properties of Disordered Proteins and Non-Specific Protein Association, Journal of Chemical Theory and Computation, vol.10, issue.11, pp.5113-5124, 2014.
DOI : 10.1021/ct500569b

J. Henriques, C. Cragnell, and M. Skepö, Molecular Dynamics Simulations of Intrinsically Disordered Proteins: Force Field Evaluation and Comparison with Experiment, Journal of Chemical Theory and Computation, vol.11, issue.7, pp.3420-3431, 2015.
DOI : 10.1021/ct501178z

D. Mercadante, S. Milles, G. Fuertes, D. Svergun, E. Lemke et al., Kirkwood???Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields, The Journal of Physical Chemistry B, vol.119, issue.25, pp.7975-7984, 2015.
DOI : 10.1021/acs.jpcb.5b03440

G. Zerze, C. Miller, D. Granata, and J. Mittal, Free Energy Surface of an Intrinsically Disordered Protein: Comparison between Temperature Replica Exchange Molecular Dynamics and Bias-Exchange Metadynamics, Journal of Chemical Theory and Computation, vol.11, issue.6, pp.2776-2782, 2015.
DOI : 10.1021/acs.jctc.5b00047

K. Lee and J. Chen, Multiscale enhanced sampling of intrinsically disordered protein conformations, Journal of Computational Chemistry, vol.23, issue.6, pp.550-557
DOI : 10.1002/jcc.23957

M. Dedmon, K. Lindorff-larsen, J. Christodoulou, M. Vendruscolo, and C. Dobson, Mapping Long-Range Interactions in ??-Synuclein using Spin-Label NMR and Ensemble Molecular Dynamics Simulations, Journal of the American Chemical Society, vol.127, issue.2, pp.476-477, 2005.
DOI : 10.1021/ja044834j

M. Mukrasch, P. Markwick, J. Biernat, B. Mv, P. Bernadó et al., Highly Populated Turn Conformations in Natively Unfolded Tau Protein Identified from Residual Dipolar Couplings and Molecular Simulation, Journal of the American Chemical Society, vol.129, issue.16, pp.5235-5243, 2007.
DOI : 10.1021/ja0690159

K. Wu, D. Weinstock, C. Narayanan, R. Levy, and J. Baum, Structural Reorganization of ??-Synuclein at Low pH Observed by NMR and REMD Simulations, Journal of Molecular Biology, vol.391, issue.4, pp.784-796, 2009.
DOI : 10.1016/j.jmb.2009.06.063

J. Kohn, I. Millett, J. Jacob, B. Zagrovic, T. Dillon et al., Random-coil behavior and the dimensions of chemically unfolded proteins, Proceedings of the National Academy of Sciences, vol.101, issue.34, pp.12491-12496, 2004.
DOI : 10.1073/pnas.0403643101

P. Bernadó and M. Blackledge, A Self-Consistent Description of the Conformational Behavior of Chemically Denatured Proteins from NMR and Small Angle Scattering, Biophysical Journal, vol.97, issue.10, pp.2839-2845, 2009.
DOI : 10.1016/j.bpj.2009.08.044

M. Mukrasch, P. Markwick, J. Biernat, B. Mv, P. Bernadó et al., Highly Populated Turn Conformations in Natively Unfolded Tau Protein Identified from Residual Dipolar Couplings and Molecular Simulation, Journal of the American Chemical Society, vol.129, issue.16, pp.5235-5243, 2007.
DOI : 10.1021/ja0690159

B. Zagrovic, J. Lipfert, E. Sorin, I. Millett, W. Van-gunsteren et al., Unusual compactness of a polyproline type II structure, Proc. Natl. Acad. Sci. USA 2005, pp.11698-11703
DOI : 10.1073/pnas.0409693102

M. Wells, H. Tidow, T. Rutherford, P. Markwick, M. Jensen et al., Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain, Proceedings of the National Academy of Sciences, vol.105, issue.15, pp.5762-5767, 2008.
DOI : 10.1073/pnas.0801353105

D. Biasio, A. , I. De-opakua, A. Cordeiro, T. Villate et al., is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins, Biophys J, vol.106, pp.15-865, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00967481

P. Bernadó, E. Mylonas, M. Petoukhov, M. Blackledge, and D. Svergun, Structural Characterization of Flexible Proteins Using Small-Angle X-ray Scattering, Journal of the American Chemical Society, vol.129, issue.17, pp.5656-5664, 2007.
DOI : 10.1021/ja069124n

G. Tria, H. Mertens, M. Kachala, and D. Svergun, Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering, IUCrJ, vol.107, issue.2, pp.207-217, 2015.
DOI : 10.1107/S205225251500202X/fc5007sup1.pdf

M. Pelikan, G. Hura, and M. Hammel, Structure and flexibility within proteins as identified through small angle X-ray scattering, General Physiology and Biophysics, vol.28, issue.2, pp.174-189, 2009.
DOI : 10.4149/gpb_2009_02_174

S. Yang, L. Blachowicz, L. Makowski, and B. Roux, Multidomain assembled states of Hck tyrosine kinase in solution, Proceedings of the National Academy of Sciences, vol.107, issue.36, pp.15757-15762, 2010.
DOI : 10.1073/pnas.1004569107

I. Bertini, A. Giachetti, C. Luchinat, G. Parigi, M. Petoukhov et al., Conformational Space of Flexible Biological Macromolecules from Average Data, Journal of the American Chemical Society, vol.132, issue.38, pp.13553-13558, 2010.
DOI : 10.1021/ja1063923

B. Rozycki, Y. Kim, and G. Hummer, SAXS Ensemble Refinement of ESCRT-III CHMP3 Conformational Transitions, Structure, vol.19, issue.1, pp.109-116, 2011.
DOI : 10.1016/j.str.2010.10.006

G. Daughdrill, S. Kashtanov, A. Stancik, S. Hill, G. Helms et al., Understanding the structural ensembles of a highly extended disordered protein, Mol. BioSyst., vol.19, issue.S3, pp.308-319, 2012.
DOI : 10.1039/C1MB05243H

L. Antonov, S. Olsson, W. Boomsma, and T. Hamelryck, Bayesian inference of protein ensembles from SAXS data, Phys. Chem. Chem. Phys., vol.106, issue.8, pp.5832-5838, 2016.
DOI : 10.1039/C5CP04886A

A. Shkumatov, S. Chinnathambi, E. Mandelkow, and D. Svergun, Structural memory of natively unfolded tau protein detected by small-angle X-ray scattering, Proteins: Structure, Function, and Bioinformatics, vol.28, issue.6 Pt 2, pp.2122-2131, 2011.
DOI : 10.1002/prot.23033

M. Kjaergaard, A. Nørholm, R. Hendus-altenburger, S. Pedersen, F. Poulsen et al., Temperature-dependent structural changes in intrinsically disordered proteins: Formation of ??-helices or loss of polyproline II?, Protein Science, vol.245, issue.8, pp.1555-1564, 2010.
DOI : 10.1002/pro.435

C. Leyrat, M. Jensen, E. Ribeiro, . Jr, F. Gérard et al., -binding region of the vesicular stomatitis virus phosphoprotein is globally disordered but contains transient ??-helices, Protein Science, vol.25, issue.3, pp.542-556, 2011.
DOI : 10.1002/pro.587

URL : https://hal.archives-ouvertes.fr/hal-00197585

K. Stott, M. Watson, F. Howe, J. Grossmann, and J. Thomas, Tail-Mediated Collapse of HMGB1 Is Dynamic and Occurs via Differential Binding of the Acidic Tail to the A and B Domains, Journal of Molecular Biology, vol.403, issue.5, pp.706-722, 2010.
DOI : 10.1016/j.jmb.2010.07.045

N. Sibille and P. Bernadó, Structural characterization of intrinsically disordered proteins by the combined use of NMR and SAXS, Biochemical Society Transactions, vol.80, issue.5, pp.955-962
DOI : 10.1021/ja012750u

M. Jensen, M. Zweckstetter, J. Huang, and M. Blackledge, Exploring Free-Energy Landscapes of Intrinsically Disordered Proteins at Atomic Resolution Using NMR Spectroscopy, Chemical Reviews, vol.114, issue.13, pp.6632-6660, 2014.
DOI : 10.1021/cr400688u

URL : https://hal.archives-ouvertes.fr/hal-01131146

J. Marsh, C. Neale, F. Jack, W. Choy, A. Lee et al., Improved Structural Characterizations of the drkN SH3 Domain Unfolded State Suggest a Compact Ensemble with Native-like and Non-native Structure, Journal of Molecular Biology, vol.367, issue.5, pp.1494-1510, 2007.
DOI : 10.1016/j.jmb.2007.01.038

M. Krzeminski, J. Marsh, C. Neale, W. Choy, and J. Forman-kay, Characterization of disordered proteins with ENSEMBLE, Bioinformatics, vol.29, issue.3, pp.398-399, 2013.
DOI : 10.1093/bioinformatics/bts701

M. Jensen, K. Houben, E. Lescop, L. Blanchard, R. Ruigrok et al., Quantitative Conformational Analysis of Partially Folded Proteins from Residual Dipolar Couplings: Application to the Molecular Recognition Element of Sendai Virus Nucleoprotein, Journal of the American Chemical Society, vol.130, issue.25, pp.8055-8061, 2008.
DOI : 10.1021/ja801332d

URL : https://hal.archives-ouvertes.fr/hal-00337329

E. Delaforge, S. Milles, G. Bouvignies, D. Bouvier, S. Boivin et al., Large-Scale Conformational Dynamics Control H5N1 Influenza Polymerase PB2 Binding to Importin ??, Journal of the American Chemical Society, vol.137, issue.48, pp.15122-15134, 2015.
DOI : 10.1021/jacs.5b07765

URL : https://hal.archives-ouvertes.fr/hal-01376157

E. Boura, B. Rózycki, D. Herrick, H. Chung, J. Vecer et al., Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy, Proceedings of the National Academy of Sciences, vol.108, issue.23, pp.9437-9442, 2011.
DOI : 10.1073/pnas.1101763108

E. Boura, B. Ró?ycki, H. Chung, D. Herrick, B. Canagarajah et al., Solution Structure of the ESCRT-I and -II Supercomplex: Implications for Membrane Budding and Scission, Structure, vol.20, issue.5, pp.874-886, 2012.
DOI : 10.1016/j.str.2012.03.008

L. Konermann, S. Vahidi, and M. Sowole, Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules, Analytical Chemistry, vol.86, issue.1, pp.213-232, 2014.
DOI : 10.1021/ac4039306

A. Borysik, D. Kovacs, M. Guharoy, and P. Tompa, Ensemble Methods Enable a New Definition for the Solution to Gas-Phase Transfer of Intrinsically Disordered Proteins, Journal of the American Chemical Society, vol.137, issue.43, pp.13807-13817, 2015.
DOI : 10.1021/jacs.5b06027

T. Keppel and D. Weis, Mapping Residual Structure in Intrinsically Disordered Proteins at Residue Resolution Using Millisecond Hydrogen/Deuterium Exchange and Residue Averaging, Journal of The American Society for Mass Spectrometry, vol.24, issue.4, pp.547-554, 2015.
DOI : 10.1007/s13361-014-1033-6

O. Brien, D. Hernandez, B. Durand, D. Hourdel, V. Sotomayor-pérez et al., Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion, p.14223
URL : https://hal.archives-ouvertes.fr/pasteur-01406897

R. Sharma, Z. Raduly, M. Miskei, and M. Fuxreiter, Fuzzy complexes: Specific binding without complete folding, FEBS Letters, vol.18, issue.19PartA, pp.2533-2542, 2015.
DOI : 10.1016/j.febslet.2015.07.022

URL : http://doi.org/10.1016/j.febslet.2015.07.022

S. Shell, C. Putnam, and R. Kolodner, The N Terminus of Saccharomyces cerevisiae Msh6 Is an Unstructured Tether to PCNA, Molecular Cell, vol.26, issue.4, pp.565-578, 2007.
DOI : 10.1016/j.molcel.2007.04.024

N. Rochel, F. Ciesielski, J. Godet, E. Moman, M. Roessle et al., Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings, Nature Structural & Molecular Biology, vol.14, issue.5, pp.564-570, 2011.
DOI : 10.1074/jbc.M204090200

URL : https://hal.archives-ouvertes.fr/hal-00667005

S. Devarakonda, K. Gupta, M. Chalmers, J. Hunt, P. Griffin et al., Disorder-to-order transition underlies the structural basis for the assembly of a transcriptionally active PGC-1??/ERR?? complex, Proceedings of the National Academy of Sciences, vol.108, issue.46, pp.18678-18683, 2011.
DOI : 10.1073/pnas.1113813108

B. Ró?ycki and E. Boura, Large, dynamic, multi-protein complexes: a challenge for structural biology, Journal of Physics: Condensed Matter, vol.26, issue.46, p.463103, 2014.
DOI : 10.1088/0953-8984/26/46/463103

D. Biasio, A. De-opakua, A. Mortuza, G. Molina, R. Cordeiro et al., Structure of p15PAF???PCNA complex and implications for clamp sliding during DNA replication and repair, Nature Communications, vol.133, p.6439, 2015.
DOI : 10.1038/ncomms7439

*. Yabukarski, F. Leyrat, C. Martinez, N. Communie, G. Ivanov et al., Ensemble Structure of the Highly Flexible Complex Formed between Vesicular Stomatitis Virus Unassembled Nucleoprotein and its Phosphoprotein Chaperone, Journal of Molecular Biology, vol.428, issue.13, pp.2671-94, 2016.
DOI : 10.1016/j.jmb.2016.04.010

URL : https://hal.archives-ouvertes.fr/hal-01341130

A. Tuukkanen and D. Svergun, Weak protein-ligand interactions studied by small-angle X-ray scattering, FEBS Journal, vol.134, issue.Web Server issu, pp.1974-87, 2014.
DOI : 10.1111/febs.12772

J. Blobel, P. Bernadó, D. Svergun, R. Tauler, and M. Pons, Low-Resolution Structures of Transient Protein???Protein Complexes Using Small-Angle X-ray Scattering, Journal of the American Chemical Society, vol.131, issue.12, pp.4378-86, 2009.
DOI : 10.1021/ja808490b

H. Chandola, T. Williamson, B. Craig, A. Friedman, and C. Bailey-kellogg, Stoichiometries and affinities of interacting proteins from concentration series of solution scattering data: decomposition by least squares and quadratic optimization, Journal of Applied Crystallography, vol.47, issue.3, pp.899-914, 2014.
DOI : 10.1107/S1600576714005913/kk5143sup1.pdf

I. Greving, C. Dicko, A. Terry, P. Callow, and F. Vollrath, Small angle neutron scattering of native and reconstituted silk fibroin, Soft Matter, vol.5, issue.18, p.4389, 2010.
DOI : 10.1039/c0sm00108b

H. Boze, T. Marlin, D. Durand, J. Pérez, A. Vernhet et al., Proline-Rich Salivary Proteins Have Extended Conformations, Biophysical Journal, vol.99, issue.2, pp.656-665, 2010.
DOI : 10.1016/j.bpj.2010.04.050

URL : http://doi.org/10.1016/j.bpj.2010.04.050

G. Owens, D. New, A. West, and P. Bjorkman, Anti-PolyQ Antibodies Recognize a Short PolyQ Stretch in Both Normal and Mutant Huntingtin Exon 1, Journal of Molecular Biology, vol.427, issue.15, pp.2507-2519, 2015.
DOI : 10.1016/j.jmb.2015.05.023

B. Vestergaard, M. Groenning, M. Roessle, J. Kastrup, M. Van-de-weert et al., A Helical Structural Nucleus Is the Primary Elongating Unit of Insulin Amyloid Fibrils, PLoS Biology, vol.92, issue.5, pp.1089-1097, 2007.
DOI : 10.1371/journal.pbio.0050134.sv002

L. Giehm, D. Svergun, and D. Otzen, Vestergaard B Low-resolution structure of a vesicle disrupting alpha-synuclein oligomer that accumulates during fibrillation