W. Vonau and U. Guth, pH Monitoring: a review, Journal of Solid State Electrochemistry, vol.169, issue.2004, pp.746-752, 2006.
DOI : 10.1007/s10008-006-0120-4

P. Bergveld, Thirty years of ISFETOLOGY, Sensors and Actuators B: Chemical, vol.88, issue.1, pp.88-89, 2003.
DOI : 10.1016/S0925-4005(02)00301-5

A. Yamada, S. Mohri, M. Nakamura, and K. Naruse, A fully automated pH measurement system for 96-well microplates using a semiconductor-based pH sensor, Sensors and Actuators B: Chemical, vol.143, issue.2, pp.143-464, 2010.
DOI : 10.1016/j.snb.2009.09.045

M. L. Gouzy, W. Sant, I. Humenyuk, L. Malaquin, X. Dollat et al., Development of pH-ISFET sensors for the detection of bacterial activity, Sensors and Actuators, pp.103-247, 2004.

E. Thedinga, A. Kob, H. Holst, A. Keuer, S. Drechsler et al., On-line monitoring of cell metabolism for studying pharmacodynamic effects, Toxicology and Applied Pharmacology, pp.220-253, 2007.

W. Sant, P. Temple-boyer, E. Chanié, J. Launay, and A. Martinez, On-line monitoring of urea using enzymatic field effect transistors, Sensors and Actuators B: Chemical, vol.160, issue.1, pp.160-59, 2011.
DOI : 10.1016/j.snb.2011.07.012

N. Fu, M. Homer, X. Sedova, B. Miao, J. Reed et al., An integrated semiconductor device enabling non-optical genome sequencing, Nature, pp.475-348, 2011.

A. Fog and R. P. Buck, Electronic semiconducting oxides as pH sensors, Sensors and Actuators, vol.5, issue.2, pp.137-146, 1984.
DOI : 10.1016/0250-6874(84)80004-9

K. Yamanaka, Anodically Electrodeposited Iridium Oxide Films (AEIROF) from Alkaline Solutions for Electrochromic Display Devices, Japanese Journal of Applied Physics, vol.28, issue.Part 1, No. 4, pp.632-637, 1989.
DOI : 10.1143/JJAP.28.632

W. Olthuis, M. A. Robben, P. Bergveld, M. Bos, and W. E. Van-der-linden, pH sensor properties of electrochemically grown iridium oxide, Sensors and Actuators B: Chemical, vol.2, issue.4, pp.2-247, 1990.
DOI : 10.1016/0925-4005(90)80150-X

M. A. Petit and V. Plichon, Anodic electrodeposition of iridium oxide films, Journal of Electroanalytical Chemistry, vol.444, issue.2, pp.444-247, 1998.
DOI : 10.1016/S0022-0728(97)00570-6

S. A. Marzouk, S. Ufer, and R. P. Buck, Electrodeposited iridium oxide pH electrodes for measurement of extracellular myocardial acidosis during acute aschemia, Analytical Chemistry, pp.70-5054, 1998.

A. N. Bezbaruah and T. C. Zhang, Fabrication of Anodically Electrodeposited Iridium Oxide Film pH Microelectrodes for Microenvironmental Studies, Analytical Chemistry, vol.74, issue.22, pp.74-5726, 2002.
DOI : 10.1021/ac020326l

M. Wang, S. Yao, and M. Madou, A long-term stable iridium oxide pH electrode, Sensors and Actuators B: Chemical, vol.81, issue.2-3, pp.81-313, 2002.
DOI : 10.1016/S0925-4005(01)00972-8

T. Kim and S. Yang, Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing, Sensors and Actuators B: Chemical, vol.196, pp.196-227, 2014.
DOI : 10.1016/j.snb.2014.02.004

A. Tsopela, A. Lale, E. Vanhove, O. Reynes, I. Séguy et al., Integrated electrochemical biosensor based on algal metabolism for water toxicity analysis, Biosensors and Bioelectronics, vol.61, pp.61-290, 2014.
DOI : 10.1016/j.bios.2014.05.004

URL : https://hal.archives-ouvertes.fr/hal-01504978

E. El-deen, M. El-giar, and D. O. Wipf, Microparticle-based iridium oxide ultramicroelectrodes for pH sensing and imaging, Journal of Electroanalytical Chemistry, pp.609-147, 2007.

E. Prats-alfonso, L. Abad, N. Casan-pastor, J. Gonzalo-ruiz, and E. Baldrich, Iridium oxide pH sensor for biomedical applications. Case urea???urease in real urine samples, Biosensors and Bioelectronics, vol.39, issue.1, pp.39-163, 2013.
DOI : 10.1016/j.bios.2012.07.022

S. C. Mailley, M. Hyland, P. Mailley, J. M. Maclaughlin, and E. T. Adams, Electrochemical and structural characterizations of electrodeposited iridium oxide thin-film electrodes applied to neurostimulating electrical signal, Materials Science and Engineering: C, vol.21, issue.1-2, pp.167-175, 2002.
DOI : 10.1016/S0928-4931(02)00098-X

I. A. Ges, B. L. Ivanov, D. K. Schaffer, E. A. Lima, A. E. Werdich et al., Thin-film IrO pH microelectrode for microfluidic-based microsystems, Biosensors and Bioelectronics, vol.21, issue.2, pp.248-256, 2005.
DOI : 10.1016/j.bios.2004.09.021

I. A. Ges, B. L. Ivanov, A. E. Werdich, and F. J. Baudenbacher, Differential pH measurements of metabolic cellular activity in nl culture volumes using microfabricated iridium oxide electrodes, Biosensors and Bioelectronics, vol.22, issue.7, pp.22-1303, 2007.
DOI : 10.1016/j.bios.2006.05.033

C. Wu, W. Lin, and S. Fu, The open container-used microfluidic chip using IrOx ultramicroelectrodes for the in situ measurement of extracellular acidification, Biosensors and Bioelectronics, vol.26, issue.10, pp.26-4194, 2011.
DOI : 10.1016/j.bios.2011.04.034

M. F. Smiechowski and V. F. Lvovich, Iridium oxide sensors for acidity and basicity detection in industrial lubricants, Sensors and Actuators B: Chemical, vol.96, issue.1-2, pp.96-261, 2003.
DOI : 10.1016/S0925-4005(03)00542-2

T. Katsube, I. Lauks, and J. N. , pH-sensitive sputtered iridium oxide films, Sensors and Actuators, vol.2, pp.399-410, 1982.
DOI : 10.1016/0250-6874(81)80060-1

K. G. Kreider, M. J. Tarlov, and J. P. Cline, Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides, Sensors and Actuators B: Chemical, vol.28, issue.3, pp.28-167, 1995.
DOI : 10.1016/0925-4005(95)01655-4

K. Nishio, Y. Watanabe, and T. Tsuchiya, Preparation and properties of electrochromic iridium oxide thin film by sol-gel process, Thin Solid Films, vol.350, issue.1-2, pp.350-96, 1999.
DOI : 10.1016/S0040-6090(99)00290-4

W. Huang, H. Cao, S. Deb, M. Chiao, and J. C. Chiao, A flexible pH sensor based on the iridium oxide sensing film, Sensors and Actuators A: Physical, vol.169, issue.1, pp.169-170, 2011.
DOI : 10.1016/j.sna.2011.05.016

K. Y. Ahn, A comparison of tungsten film deposition techniques for very large scale integration technology, Thin Solid Films, vol.153, issue.1-3, pp.469-478, 1987.
DOI : 10.1016/0040-6090(87)90206-9

S. Schmidbauer, J. Hahn, A. Buerke, F. Jakubowski, O. Storbeck et al., Interface optimization for polysilicon/tungsten gates, Microelectronic Engineering, pp.85-2037, 2008.
DOI : 10.1016/j.mee.2008.07.010

J. L. He and M. C. Chiu, Effect of oxygen on the electrochromism of RF reactive magnetron sputter deposited tungsten oxide, Surface and Coatings Technology, vol.127, issue.1, pp.127-170, 2000.
DOI : 10.1016/S0257-8972(99)00663-5

C. Brigouleix, P. Topart, E. Bruneton, F. Sabary, G. Nouhaut et al., Roll-to-roll pulsed dc magnetron sputtering deposition of WO3 for electrochromic windows, Electrochimica Acta, vol.46, issue.13-14, pp.46-1931, 2001.
DOI : 10.1016/S0013-4686(01)00362-0

B. Marsen, E. L. Miller, D. Paluselli, and R. E. Rocheleau, Progress in sputtered tungsten trioxide for photoelectrode applications, International Journal of Hydrogen Energy, vol.32, issue.15, pp.32-3110, 2007.
DOI : 10.1016/j.ijhydene.2006.01.022

A. Subrahmanyam and K. Karruppasamy, Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films, Solar Energy Materials and Solar Cells, vol.91, issue.4, pp.91-266, 2007.
DOI : 10.1016/j.solmat.2006.09.005

M. J. Natan, T. E. Mallouk, and M. S. Wrighton, pH-sensitive WO3-based microelectrochemical transistors, Journal of Physical Chemistry, pp.91-648, 1987.

L. T. Dimitrakopoulos, T. Dimitrakopoulos, P. W. Alexander, D. Logic, and D. B. Hibbert, A tungsten oxide coated wire electrode used as a pH sensor in flow injection potentiometry, Analytical Communications, vol.35, issue.12, pp.35-395, 1998.
DOI : 10.1039/a807697i

M. Anik, Anodic behavior of tungsten in H3PO4-K2SO4-H2SO4/KOH solutions, Turkish Journal of Chemistry, vol.26, pp.915-924, 2002.

K. Yamamoto, G. Shi, T. Zhou, F. Xu, M. Zhu et al., Solidstate pH ultramicrosensor based on tungstic oxide film fabricated on a tungsten nanoelectrode and its application on the study of endothelial cells, Analytica Chimica Acta, pp.480-109, 2003.

A. Ruffien-ciszak, J. Baur, P. Gros, E. Questel, and M. Comtat, Electrochemical microsensors for cutaneous surface analysis: Application to the determination of pH and the antioxidant properties of stratum corneum, IRBM, vol.29, issue.2-3, pp.29-162, 2008.
DOI : 10.1016/j.rbmret.2007.11.020

I. A. Pasti, T. L. Pasti, and S. V. Mentus, Switching between voltammetry and potentiometry in order to determine H + or OH -ion concentration over the entire pH scale by means of tungsten disk electrode, Journal of Electroanalytical Chemistry, pp.665-83, 2012.

Y. Wen and X. Wang, Characterization and application of a metallic tungsten electrode for potentiometric pH measurements, Journal of Electroanalytical Chemistry, vol.714, issue.715, pp.714-715, 2014.
DOI : 10.1016/j.jelechem.2013.12.031

G. G. Stoney, The Tension of Metallic Films Deposited by Electrolysis, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.82, issue.553, pp.172-175, 1909.
DOI : 10.1098/rspa.1909.0021

C. Christophe, F. Sekli-belaidi, J. Launay, P. Gros, E. Questel et al., Elaboration of integrated microelectrodes for the detection of antioxidant species, Sensors and Actuators B: Chemical, vol.177, pp.177-350, 2013.
DOI : 10.1016/j.snb.2012.11.032

URL : https://hal.archives-ouvertes.fr/hal-01508104

E. Vanhove, A. Tsopela, L. Bouscayrol, A. Desmoulin, J. Launay et al., Final capping passivation layers for long-life microsensors in real fluids, Sensors and Actuators B: Chemical, vol.178, pp.178-350, 2013.
DOI : 10.1016/j.snb.2012.12.088

URL : https://hal.archives-ouvertes.fr/hal-01508078

F. Meyer, C. Schwebel, C. Pellet, and G. Gautherin, Characterization of ion-beam-sputtered tunsten films on silicon, Applied Surface Science, pp.36-231, 1989.

M. C. Hugon, F. Varnière, B. Agius, M. Froment, C. Arena et al., Stresses, microstructure and resistivity of thin tunsten films deposited by RF magnetron sputtering, Applied Surface Science, pp.38-269, 1989.

M. Mamor, E. Dufour-gergam, L. Finkman, G. Tremblay, F. Meyer et al., W/Si Schottky diodes: effect of sputtering deposition conditions on the barrier height, Applied Surface Science, pp.91-342, 1995.

G. Zazarra and I. E. Reimanis, Residual stresses in the failure of W???Pt???Ag metallizations on oxidized Si, Surface and Coatings Technology, vol.111, issue.1, pp.111-92, 1999.
DOI : 10.1016/S0257-8972(98)00713-0

J. A. Thornton and D. W. Hoffman, Stress-related effects in thin films, Thin Solid Films, vol.171, issue.1, pp.171-176, 1989.
DOI : 10.1016/0040-6090(89)90030-8

S. M. Rossnagel, I. C. Noyan, and C. Cabral, Phase transformation of thin sputter-deposited tungsten films at room temperature, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.5, pp.20-2047, 2002.
DOI : 10.1116/1.1506905

A. F. Mayadas and M. Schatzkes, Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces, Physical Review B, vol.1, issue.4, pp.1-1382, 1970.
DOI : 10.1103/PhysRevB.1.1382

. Cabral, Microstructure, growth, resistivity and stresses in thin tungsten films deposited by RF sputtering, Journal of Applied Physics, pp.44-2545, 1973.

L. Tymecki, Screen-printed reference electrodes for potentiometric measurements, Analytica Chimica Acta, vol.526, issue.1, pp.3-11, 2004.
DOI : 10.1016/j.aca.2004.08.056

M. W. Shinwari, Microfabricated Reference Electrodes and their Biosensing Applications, Sensors, vol.10, issue.3, pp.10-1679, 2010.
DOI : 10.3390/s100301679

URL : http://doi.org/10.3390/s100301679

A. Cazalé, W. Sant, J. Launay, F. Ginot, and P. Temple-boyer, Study of field effect transistors for the sodium detection using fluorosiloxane-based sensitive layers, Sensors and Actuators, pp.177-515, 2013.

M. Anik and K. Osseo-assare, Effect of pH on the Anodic Behavior of Tungsten, Journal of The Electrochemical Society, vol.149, issue.6, pp.224-233, 2002.
DOI : 10.1149/1.1471544

M. L. Pourciel-gouzy, S. Assié-souleille, L. Mazenq, J. Launay, and P. Temple-boyer, pH- ChemFET-based analysis devices for the bacterial activity monitoring, Sensors and Actuators, pp.134-339, 2008.

P. Temple-boyer, J. Launay, I. Humenyuk, T. D. Conto, A. Martinez et al., Study of front-side connected chemical field effect transistor for water analysis, Microelectronics Reliability, pp.44-443, 2004.
DOI : 10.1016/j.microrel.2003.10.001

I. Humenyuk, P. Temple-boyer, and G. Sarrabayrouse, The effect of ??-sterilization on the pH-ChemFET behaviour, Sensors and Actuators A: Physical, vol.147, issue.1, pp.147-165, 2008.
DOI : 10.1016/j.sna.2008.05.022

A. Lale-was-born-in-lyon and F. , He received his Master's degree in microelectronics/micro-systems from the Paul Sabatier University of Toulouse (France) in 2012. He joined the "Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS) of the "Centre National de la Recherche Scientifique" (CNRS) of Toulouse in 2012 as a PhD student. He works on the development of electrochemical micro/nanosensors for chemical and biochemical detection, 1985.

P. Temple-boyer, He received his Engineer's Degree in electronic engineering from theEcole Supérieure d'Electricité" (Paris ? France) in 1990 and his Master's Degree in microelectronics from the University of Toulouse (France) in 1992. He joined the "Laboratoire d'Architecture et d'Analyse des Systèmes, LAAS) from the French "Centre National de la Recherche Scientifique" (CNRS) in 1992 and received the PhD degree from the "Institut National des Sciences Appliquées de Toulouse, 1966.