P. G. Madden, J. D. Madden, P. Anquetil, N. Vandesteeg, and I. W. Hunter, The relation of conducting polymer actuator material properties to performance , Oceanic Engineering, IEEE Journal, vol.29, issue.3, pp.696-705, 2004.

E. Smela, Conjugated Polymer Actuators for Biomedical Applications, Advanced Materials, vol.15, issue.6, 2003.
DOI : 10.1002/adma.200390113

. Spinks, Patterning and electrical interfacing of individually controllable conducting polymer microactuators, Sensors and Actuators B: Chemical, vol.183, pp.283-289, 2013.

A. Simaite, Development of ionic electroactive actuators with improved interfacial adhesion: towards the fabrication of inkjet printable artificial muscles, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01292026

X. Chen, K. Xing, and O. Inganäs, Electrochemically induced volume changes in poly, Chemistry of materials, vol.3, issue.810, pp.2439-2443, 1996.
DOI : 10.1021/cm9600034

X. Lin, J. Li, E. Smela, and S. Yip, Polaron-induced conformation change in single polypyrrole chain: An intrinsic actuation mechanism, International Journal of Quantum Chemistry, vol.2, issue.5, pp.980-985, 2005.
DOI : 10.1002/qua.20433

T. F. Otero, H. Grande, and J. Rodríguez, Reinterpretation of Polypyrrole Electrochemistry after Consideration of Conformational Relaxation Processes, The Journal of Physical Chemistry B, vol.101, issue.19, pp.3688-3697, 1997.
DOI : 10.1021/jp9630277

A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merker, and K. Reuter, PE- DOT: principles and applications of an intrinsically conductive polymer, 2010.

X. Wang, Understanding Actuation Mechanisms of Conjugated Polymer Actuators: Ion Transport, 2007.

M. Gandhi, P. Murray, G. Spinks, and G. Wallace, Mechanism of electromechanical actuation in polypyrrole, Synthetic Metals, vol.73, issue.3, pp.247-256, 1995.
DOI : 10.1016/0379-6779(95)80022-0

S. Skaarup, L. Bay, K. Vidanapathirana, S. Thybo, P. Tofte et al., Simultaneous anion and cation mobility in polypyrrole, Solid State Ionics, vol.159, issue.1-2, pp.143-147, 2003.
DOI : 10.1016/S0167-2738(03)00007-9

L. Bay, T. Jacobsen, S. Skaarup, and K. West, Mechanism of Actuation in Conducting Polymers:?? Osmotic Expansion, The Journal of Physical Chemistry B, vol.105, issue.36, pp.8492-8497, 2001.
DOI : 10.1021/jp003872w

T. Otero and I. Boyano, Comparative Study of Conducting Polymers by the ESCR Model, The Journal of Physical Chemistry B, vol.107, issue.28, pp.6730-6738, 2003.
DOI : 10.1021/jp027748j

G. A. Snook, P. Kao, and A. S. Best, Conducting-polymer-based supercapacitor devices and electrodes, Journal of Power Sources, vol.196, issue.1, pp.1-12, 2011.
DOI : 10.1016/j.jpowsour.2010.06.084

A. Punning, I. Must, I. Põldsalu, V. Vunder, R. Temmer et al., Lifetime measurements of ionic electroactive polymer actuators, Journal of Intelligent Material Systems and Structures, vol.21, issue.1, pp.2267-2275, 2014.
DOI : 10.1016/j.sna.2004.03.043

J. D. Madden, D. Rinderknecht, P. A. Anquetil, and I. W. Hunter, Creep and cycle life in polypyrrole actuators, Sensors and Actuators A: Physical, vol.133, issue.1, pp.210-217, 2007.
DOI : 10.1016/j.sna.2006.03.016

A. Punning, I. Must, I. Põldsalu, V. Vunder, F. Kaasik et al., Aabloo, Long-term degradation of the ionic electroactive polymer actuators, SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp.94300-94300, 2015.

I. S. Romero, N. P. Bradshaw, J. D. Larson, S. Y. Severt, S. J. Roberts et al., Biocompatible Electromechanical Actuators Composed of Silk-Conducting Polymer Composites, Advanced Functional Materials, vol.133, issue.25, pp.3866-3873, 2014.
DOI : 10.1002/adfm.201303292

V. Vunder, A. Punning, and A. Aabloo, Long-term response of ionic electroactive polymer actuators in variable ambient conditions, SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp.94300-94300, 2015.

D. Melling, S. Wilson, and E. W. Jager, The effect of film thickness on polypyrrole actuation assessed using novel non-contact strain measurements, Smart Materials and Structures, vol.22, issue.10, p.104021, 2013.
DOI : 10.1088/0964-1726/22/10/104021

L. Valero, J. G. Martinez, and T. F. Otero, Creeping and structural effects in Faradaic artificial muscles, Journal of Solid State Electrochemistry, vol.16, issue.9, pp.1-7, 2015.
DOI : 10.1007/s10008-015-2775-1

URL : http://dx.doi.org/10.1007/s10008-015-2775-1

K. Kaneto, H. Suematsu, and K. Yamato, Training effect and fatigue in polypyrrole-based artificial muscles, Bioinspiration & Biomimetics, vol.3, issue.3, p.35005, 2008.
DOI : 10.1088/1748-3182/3/3/035005

K. Kaneto, T. Shinonome, K. Tominaga, and W. Takashima, Electrochemical Creeping and Actuation of Polypyrrole in Ionic Liquid, Japanese Journal of Applied Physics, vol.50, issue.9R, p.91601, 2011.
DOI : 10.7567/JJAP.50.091601

K. Tominaga, H. Hashimoto, W. Takashima, and K. Kaneto, Training and shape retention in conducting polymer artificial muscles, Smart Materials and Structures, vol.20, issue.12, p.124005, 2011.
DOI : 10.1088/0964-1726/20/12/124005

X. Wang and E. Smela, Color and Volume Change in PPy(DBS), The Journal of Physical Chemistry C, vol.113, issue.1, pp.359-368, 2008.
DOI : 10.1021/jp802937v

E. Smela and N. Gadegaard, Surprising Volume Change in PPy(DBS): An Atomic Force Microscopy Study, Advanced Materials, vol.11, issue.11, pp.953-957, 1999.
DOI : 10.1002/(SICI)1521-4095(199908)11:11<953::AID-ADMA953>3.0.CO;2-H

E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, vol.39, issue.6, pp.937-950, 2001.
DOI : 10.1016/S0008-6223(00)00183-4

M. Moniruzzaman and K. I. Winey, Polymer Nanocomposites Containing Carbon Nanotubes, Macromolecules, vol.39, issue.16, pp.5194-5205, 2006.
DOI : 10.1021/ma060733p

E. T. Thostenson, Z. Ren, and T. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites science and technology, pp.61-1899, 2001.

N. Khalili, H. E. Naguib, and R. H. Kwon, On the geometrical and mechanical multi-aspect optimization of ppy/mwcnt actuators, SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp.90561-90561, 2014.

P. V. Pillai, Development and characterization of conducting polymer actuators, Massachusetts Institute of Technology, 2011.

J. Torop, A. Aabloo, and E. W. Jager, Novel actuators based on polypyrrole/carbide-derived carbon hybrid materials, Carbon, vol.80, pp.387-395, 2014.
DOI : 10.1016/j.carbon.2014.08.078

URL : http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112604

W. Zheng, J. M. Razal, P. G. Whitten, R. Ovalle-robles, G. G. Wallace et al., Artificial Muscles Based on Polypyrrole/Carbon Nanotube Laminates, Advanced Materials, vol.2, issue.26, pp.2966-2970, 2011.
DOI : 10.1002/adma.201100512

URL : http://dro.deakin.edu.au/eserv/DU:30061337/razal-artificialmuscles-2011.pdf

M. Endo, M. S. Strano, and P. M. Ajayan, Potential Applications of Carbon Nanotubes, pp.13-62, 2008.
DOI : 10.1007/978-3-540-72865-8_2

Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Carbon nanotube???polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in polymer science, pp.357-401, 2010.
DOI : 10.1016/j.progpolymsci.2009.09.003

D. Yun, K. Hong, S. H. Kim, W. Yun, J. Jang et al., Multiwall Carbon Nanotube and Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate (PEDOT:PSS) Composite Films for Transistor and Inverter Devices, ACS Applied Materials & Interfaces, vol.3, issue.1, pp.43-49, 2011.
DOI : 10.1021/am1008375

J. Zhang, L. Gao, J. Sun, Y. Liu, Y. Wang et al., Incorporation of single-walled carbon nanotubes with PEDOT/PSS in DMSO for the production of transparent conducting films, Diamond and Related Materials, vol.22, pp.82-87, 2012.
DOI : 10.1016/j.diamond.2011.12.008

E. Flahaut, R. Bacsa, A. Peigney, and C. Laurent, Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chemical Communications, issue.12, pp.1442-1443, 2003.
DOI : 10.1039/b301514a

URL : https://hal.archives-ouvertes.fr/hal-00926035

F. Seichepine, E. Flahaut, and C. Vieu, A simple and versatile method for statistical analysis of the electrical properties of individual double walled carbon nanotubes, Microelectronic Engineering, vol.88, issue.7, pp.1637-1639, 2011.
DOI : 10.1016/j.mee.2011.01.081

URL : https://hal.archives-ouvertes.fr/hal-00828791

A. Simaite, B. Tondu, P. Soueres, and C. Bergaud, -PEGMA Membranes for Improved Interface Strength and Lifetime of PEDOT:PSS/PVDF/Ionic Liquid Actuators, ACS Applied Materials & Interfaces, vol.7, issue.36, pp.19966-19977, 2015.
DOI : 10.1021/acsami.5b04578

URL : https://hal.archives-ouvertes.fr/tel-01292026

A. Simaite, B. Tondu, F. Mathieu, P. Souéres, and C. Bergaud, Simple casting based fabrication of pedot: Pss-pvdf-ionic liquid soft actuators, SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp.94301-94301, 2015.

D. A. Mengistie, P. Wang, and C. Chu, Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells, Journal of Materials Chemistry A, vol.88, issue.34, pp.9907-9915, 2013.
DOI : 10.1039/c3ta11726j

N. Khalili, H. Naguib, and R. Kwon, Electrochemomechanical constrained multiobjective optimization of PPy/MWCNT actuators, Smart Materials and Structures, vol.23, issue.10, pp.2014-105022
DOI : 10.1088/0964-1726/23/10/105022

T. Sugino, K. Kiyohara, I. Takeuchi, K. Mukai, and K. Asaka, Improving the actuating response of carbon nanotube/ionic liquid composites by the addition of conductive nanoparticles, Carbon, vol.49, issue.11, pp.3560-3570, 2011.
DOI : 10.1016/j.carbon.2011.04.056

H. Okuzaki, S. Takagi, F. Hishiki, and R. Tanigawa, Ionic liquid/polyurethane/PEDOT:PSS composites for electro-active polymer actuators, Sensors and Actuators B: Chemical, vol.194, pp.59-63, 2014.
DOI : 10.1016/j.snb.2013.12.059

B. Fan, Y. Xia, and J. Ouyang, Novel ways to significantly enhance the conductivity of transparent pedot: Pss, SPIE Photonic Devices+ Applications, International Society for Optics and Photonics, pp.74151-74151, 2009.