A multimode fiber refractive index sensor
Haris Apriyanto, Gautier Ravet, Olivier Daniel Bernal, Michel Cattoen, Françoise Lizion, Han Cheng Seat, Valérie Chavagnac

To cite this version:

HAL Id: hal-01460075
https://hal.laas.fr/hal-01460075
Submitted on 7 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Multimode Fiber Refractive Index Sensor

LAAS-CNRS, Université de Toulouse, CNRS, INP
Toulouse, France
haris.apriyanto@enseeiht.fr

V. Chavagnac
Géosciences Environnement Toulouse UMR5563
OMP, Université de Toulouse, CNRS, IRD
Toulouse, France
haris.apriyanto@enseeiht.fr

Abstract—We present a simple refractive index sensor based
on multimode fibers realized by stripping three different lengths
of cladding. We theoretically explain and experimentally validate
three mechanisms occurring in the multimode fiber for sensing
surrounding refractive index. This sensor has been demonstrated
at 1550 nm for a wide range of refractive index variation from
1.3164 to 1.608. Our sensor is very sensitive for measuring
refractive index values lower than but close to the refractive
index value of the fiber core.

Keywords—Refractive index sensor; Refractometer; Multimode
fiber sensor; Evanescent wave; Stripped cladding

I. INTRODUCTION

The refractive index (RI) sensor, also commonly known as
the refractometer, is widely used in the food, chemical,
biomedical industries, as well as in environmental monitoring,
etc. Due to their good sensitivity, RI sensors have been used
for measuring methane concentration by using cryptophane
based traps in polymeric PDMS to absorb the methane
molecules leading to refractive index variation from 1.412 to
1.413 with a sensitivity 5.5 RIU/nm at 830 nm of wavelength
[1].

The principal techniques employed for measuring RI, an
optical phenomenon, consist of prisms [2-3], fiber-based
surface plasmon resonance (SPR) [4], microstructured fiber-
based SPR [5], Fresnel reflection at an optical fiber interface
[6-8], fiber Bragg grating [9-10], fiber ring laser [11],
nanometric plasmonic [12], multimode fiber [13-15], and
tapered multimode optical fiber [16].

In this paper, we present a simple yet elegant multimode
fiber sensor for measuring RI over a relatively wide dynamic
range where the sensing area is a section of stripped fiber
cladding. The impact of the length of stripped cladding section
is also investigated to estimate the sensor's sensitivity over
the useful RI range. The advantages of this sensor are its
simplicity, cost-effectiveness, wide range and high sensitivity
for RI values lower than but near to the RI of the fiber core.

II. PRINCIPLE OF OPERATION

In wave optics, the propagation of the injected laser beam
in the optical fiber can be represented in terms of modes. To
define the number of modes (M), the V-parameter can be used
and is a function of the relative RI difference between
the fiber core (nco) and cladding (ncl), operational wavelength
(λ), and core radius (a), governed by the relationship [17]

\[M = \frac{4}{\pi} \cdot \frac{V^2}{\lambda^2} \] \hspace{1cm} (1)

where \(V \) is given by

\[V = \frac{2 \pi a}{\lambda} \sqrt{n_{co}^2 - n_{cl}^2} \]

In a step-index fiber, each mode that propagates in the
optical fiber has a unique propagation constant which is
proportional to the effective guide index \((n_{eff}) \) and
wavenumber \((k) \) [18] given by

\[\beta = kn_{eff} \] \hspace{1cm} (2)

However, through ray optics analysis, this mode can also
be represented as a ray propagating in the core region at a
certain angle \((\theta_c) \), as shown in Fig. 1, with

\[n_{eff} = n_{co} \cdot \sin\theta \] \hspace{1cm} (3)

Fig. 1. Principle of propagation in step-index fiber.

where the possible angles within which the ray can propagate
in the core should respect \(\theta_c \leq \theta \leq 90^\circ \). The guided modes are
thus within \(n_{co} \cdot \sin \theta_c \leq n_{eff} \cdot \sin \theta \leq n_{co} \cdot \sin 90^\circ \), corresponding
to possible effective indices of \(n_{cl} \leq n_{eff} \leq n_{co} \). The number
of guided modes, and hence the transmitted optical power, in
the fiber are thus highly dependent on RI variation of the outer
cladding layer, potentially rendering the MMF a highly
sensitive refractometer. For RI measurements, a section of the
MMF outer cladding layer is removed and the exposed fiber
core serving as the sensing region is arranged to be in contact
with the external medium subject to RI variation.

The length of the stripped cladding section is here
investigated as a function of the MMF sensitivity to RI
variations and is correlated to 3 possible operating conditions
occurring in the sensing region with respect to the RI of the
external sensing medium \((n_{ms}) \), namely: a) \(n_{ms} \leq n_{cl} \), b) \(n_{cl} \leq n_{ms} \leq n_{co} \), and c) \(n_{co} \leq n_{ms} \).

For \(n_{ms} \leq n_{cl} \) (or Zone I), the RI of the medium is detected
via the phenomenon of evanescent wave absorption that exists
during propagation when the modes are guided by total
internal reflection (TIR). The evanescent field is generated at
the core-cladding interface, and penetrates into the cladding
(Fig. 2) to a certain depth \((d_{ev}) \) [19] given by

\[d_{ev} = \frac{\beta}{\kappa} \] \hspace{1cm} (4)

where \(\kappa \) is the wave number of the medium

\[\kappa = \frac{2\pi}{\lambda} \cdot \sqrt{n_{ms}^2 - n_{cl}^2} \] \hspace{1cm} (5)

The penetration depth is limited by the evanescent field
absorption, which causes a significant decrease of the electric
field at the boundary. This effect is present for all guided
modes, and the absorption coefficient \((\alpha) \) is related to
the evanescent field penetration depth \((d_{ev}) \).

\[\alpha = \frac{2\pi n_{cl} d_{ev}}{\lambda} \] \hspace{1cm} (6)

For \(n_{cl} \leq n_{ms} \leq n_{co} \) (Zone II), the RI of the medium is detected
via the phenomenon of total internal reflection (TIR) occurring
when the模式 are guided by the fiber core. The evanescent
field is generated at the core-cladding interface, and
penetrates into the cladding (Fig. 2) to a certain depth \((d_{ev}) \) [19] given by

\[d_{ev} = \frac{\beta}{\kappa} \] \hspace{1cm} (4)

where \(\kappa \) is the wave number of the medium

\[\kappa = \frac{2\pi}{\lambda} \cdot \sqrt{n_{ms}^2 - n_{cl}^2} \] \hspace{1cm} (5)

The penetration depth is limited by the evanescent field
absorption, which causes a significant decrease of the electric
field at the boundary. This effect is present for all guided
modes, and the absorption coefficient \((\alpha) \) is related to
the evanescent field penetration depth \((d_{ev}) \).

\[\alpha = \frac{2\pi n_{cl} d_{ev}}{\lambda} \] \hspace{1cm} (6)
\[d_p = \frac{\lambda_0}{2\pi} \sqrt{\frac{\sin^2 \Theta - \left(\frac{n_{co}}{n_{ms}} \right)^2}{\sin^2 \Theta}} \] (4)

Further, the evanescent wave is attenuated in the cladding. The cladding attenuation coefficient \(\gamma \) is proportional to the total attenuation coefficient \(\alpha \) and to the fraction of the guided power \(r \), \(\gamma = r \alpha \), with \(r = \frac{P_{clad}}{P_{total}} \). Since we removed the cladding and replaced it by a medium for sensing, the power transmitted at the sensing length \(L \) is given by

\[P(L) = P(0) \exp(-\gamma L) \] (5)

![Fig. 2. Evanescent wave in the cladding region (Zone I).](image)

For the second condition, illustrated in Fig. 3, where \(n_{cl} \leq n_{ms} \leq n_{co} \) (Zone II), the RI variation is due to 2 phenomena: a) modification to the critical angle since \(\theta_c = \arcsin(n_{cl} / n_{co}) \), leading to the variation of the number of guided modes, and b) the evanescent wave absorption by the external medium since TIR still occurs under these conditions. Hence, there should be a stronger variation of the transmitted power than Zone I over the same variation in RI.

![Fig. 3. Contributions from critical angle variation, and evanescent wave absorption for \(n_{cl} \leq n_{ms} \leq n_{co} \) (Zone II).](image)

Finally, when \(n_{co} \leq n_{ms} \) (Zone III), the laser beam in the MMF core is propagated by external reflection. This phenomenon occurs since the core index is lower than that of the cladding at an incident angle close to 90°. This implies that the external reflection only occurs for lower order modes. In this condition, no evanescent wave interacts with the sensing medium as illustrated in Fig. 4.

![Fig. 4. External reflection in MMF (Zone III).](image)

\[\sin \theta_i = \frac{n_{co}}{n_{ms}} \sin \theta_i \] (5)

while the reflection coefficients for the P- and S-polarizations are given by Fresnel relations [20]:

\[r_p = \frac{\tan(\theta_i - \theta_1)}{\tan(\theta_i + \theta_1)} \quad r_s = \frac{\sin(\theta_i - \theta_1)}{\sin(\theta_i + \theta_1)} \] (6)

The resulting total reflectivity \(R \) is thus given by

\[R = \frac{1}{2} (r_p^2 + r_s^2) \] (7)

III. EXPERIMENT SETUP

The sensing fiber employed is a multimode plastic-clad-silica (PCS) fiber with a numerical aperture (NA) of 0.48, and core and cladding diameters of 200 µm and 230 µm, respectively. The cladding layer is removed to obtain three different sensing lengths of 1 cm, 2.5 cm and 4 cm. Further, in order to excite all possible modes in this MMF, a microscope objective (MO) with an NA of 0.65 is employed.

To detect the RI of the medium, the variation of the optical power transmitted in the fiber is measured. In addition, to compensate ambient temperature perturbations, a differential set-up is exploited, with one MMF serving as the reference fiber \(P_{ref} \) and the second as the sensing fiber \(P_{sens} \), as shown in Fig. 5.

![Fig. 5. Schematic diagram of the experimental set-up.](image)

The RI variation of the medium is obtained from a combination of glycerol and water for RI from 1.3164 to 1.4569 (at a wavelength of 1550 nm)[21], and calibrated oils for RI beyond 1.4569.

IV. RESULTS AND DISCUSSION

The RI measurements are carried out by normalizing the power transmitted by the sensing MMF with respect to the reference MMF over the RI range 1.3164 - 1.608. From the available NA and fiber core data \(n_{co} = 1.44402 \), the fiber cladding index, \(n_{cl} \), is estimated to be 1.362.

The experimental results are plotted in Figs. 6 and 7 for three different lengths of sensing region. To facilitate the analysis of the results, both curves are divided into the three conditions (or zones) as previously explained, i.e. a) \(n_{ms} \leq 1.362 \), b) \(1.362 \leq n_{ms} \leq 1.44402 \), and c) \(n_{ms} \geq 1.44402 \). Subsequently, to estimate the sensitivities of this sensor, we derived the function of the curves in Fig. 6 for each of the sensing lengths, the results of which are plotted in Fig. 7.

![Fig. 6. Optical power ratio (\(P_{sens} / P_{ref} \)) versus RI variation.](image)

According to Fig. 7, for Zone I, a better sensitivity is achieved by the 4 cm stripped cladding, compared with the 1 cm and 2.5 cm stripped claddings. This confirms the
exponentially decreasing transmitted power due to evanescent wave absorption as a function of the stripped cladding length described by (5). The highest sensitivity is achieved at the end of Zone II with a -32.93 RIU⁻¹, -28 RIU⁻¹ and -22.98 RIU⁻¹ for the 1 cm, 2.5 cm and 4 cm stripped cladding, respectively. This sharp decrease is due to the larger losses of the lower order modes. However, at the beginning of Zone II (1.365-1.417), which can be applied for methane sensing, the longer cladding section (4 cm) has a better sensitivity than the others. For Zone III, since external reflection occurs in the sensing region, most of the optical power is transmitted to the exterior of fiber, thus significantly reducing the guided power in the core. According to (6) and (7), the guided optical power increases for increasing RI.

![Graph](image-url)

Fig. 7. Sensitivity of the sensor versus RI variation ($P=\frac{P_{\text{out}}}{P_{\text{in}}}$).

Due to a lower number of reflections (N) at the core-medium boundary, the guided power is thus higher for the shorter stripped length. By adapting (7), the guided power can be calculated by $P(N) = P_0(N)^N$, with P_0 the incident power. For a fiber with a core diameter a and a sensing length L, $N=L/(a \tan \theta)$. Since the value of R in (7) is always less than 1, more reflections lead to a reduced guided power. Figs. 6 and 7 show that in the case of external reflection, the shorter stripped clad fiber has a better sensitivity.

V. CONCLUSION

A refractive index sensor based on the multimode fiber was conceived to measure refractive indices from 1.3164 to 1.608 at a wavelength of 1550 nm. We described three sensitivity zones with respect to the RI of the cladding and the core of the fiber. In the first zone, a stripped clad fiber of 4 cm has a better sensitivity than both the 1 cm and 2.5 cm devices. The sensitivity is highest at the end of the second zone, and is better for the 1 cm stripped cladding. Finally, for the third zone, less power is guided but increases for increasing refractive index, with a better sensitivity obtained for a shorter length of the stripped clad.

ACKNOWLEDGMENT

Haris Apriyanto acknowledges the Indonesia Endowment Fund for Education (LPDP) for a PhD scholarship.

REFERENCES