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Big Data for Autonomic Intercontinental
Overlays

Olivier Brun, Lan Wang and Erol Gelenbe Life Fellow, IEEE

Abstract—This paper uses Big Data and Machine Learn-
ing for the real-time management of Internet scale Quality-
of-Service Route Optimisation with an overlay network.
Based on the collection of data sampled each 2 minutes
over a large number of source-destinations pairs, we
show that intercontinental Internet Protocol (IP) paths
are far from optimal with respect to Quality of Service
(QoS) metrics such as end-to-end round-trip delay. We
therefore develop a machine learning based scheme that
exploits large scale data collected from communicating
node pairs in a multi-hop overlay network that uses IP
between the overlay nodes, and selects paths that provide
substantially better QoS than IP. Inspired from Cognitive
Packet Network protocol, it uses Random Neural Networks
with Reinforcement Learning based on the massive data
that is collected, to select intermediate overlay hops. The
routing scheme is illustrated on a 20-node intercontinental
overlay network that collects some 2× 106 measurements
per week, and makes scalable distributed routing decisions.
Experimental results show that this approach improves
QoS significantly and efficiently.

Index Terms—The Internet, Big Data, Network QoS,
Smart Overlays, Random Neural Network, Cognitive
Packet Network.

I. INTRODUCTION

AUTONOMIC communications [1] were introduced
as a means to set-up and adaptively manage large

scale networks based on user needs, without direct
human intervention. Although the field emerged from
active networks [2], it is making its mark in software
overlay networks [3] and distributed system design [4].
In the future, autonomic communications may further
increase their hold through the flexibility offered by
Software Defined Networks (SDN) [5].

Well known network measurements have shown that
IP (Internet Protocol) routing often results in paths that
are sub-optimal with respect to a number of metrics [6],
[7]. Besides, measurements have also established that
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the routing scalability of the Internet comes at the
expense of reduced fault-tolerance of end-to-end com-
munications between Internet hosts [7]–[11]. Current
routing protocols may work reasonably well when only
“best effort” delivery is required, but the requirements
for modern distributed services are typically far more
stringent, demanding greater performance and availabil-
ity of end-to-end routes than these protocols can deliver.
The ideal solution would be a complete rethink of
the Internet routing infrastructure, doing away with the
existing architecture and redesigning it with the benefit
of hind-sight about its deficiencies. Unfortunately, the
Internet has become resistant to major changes, prevent-
ing even necessary changes to take place.

On the other hand, routing overlays have been pro-
posed as a method for improving performance, without
the need to re-engineer the underlying network [12]–
[15]. The basic idea is to move some of the control over
routing into the hands of end-systems. As illustrated
in Figure 1, a routing overlay is formed by software
routers, which are deployed in different spots over
the Internet. The overlay nodes monitor the quality of
the Internet routes between themselves and cooperate
with each other to share data. By adding intermediate
routing hops into the path taken by streams of packets,
they influence the overall path taken by the packets,
without modifying the underlying IP mechanism for
computing routes. In a routing overlay, the endpoints
of the information exchange are unchanged from what
they would have been in the absence of the overlay, but
the route through the network that the packets traverse
may be quite different.

Routing overlays can be used to quickly recover from
path outages, and also improve the QoS of data flows.
Indeed, the overlay nodes constantly monitor the IP
routes between themselves so that failed parts of the
Internet can be avoided when a node detects that the
primary Internet path is subject to anomalies. Similarly,
this approach makes it possible to override the routes
determined by Internet protocols and to route traffic
based on metrics directly related to the performance
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Overlay Node

Underlay IP Network

Fig. 1. Schematic description of the structure of a routing overlay,
where the Overlay Nodes exchange packets with each other with
packets that tunnel through the IP connections, while paths between
Overlay Nodes may transit through intermediate Overlay Nodes.

needs of the application.
The Resilient Overlay Network (RON) [16] was the

first routing overlay to be implemented in a wide-area
network, demonstrating that adding an extra (overlay)
routing hop could benefit an application in terms of im-
proved delay and reachability. To find and use alternate
paths, RON monitors the health of the underlying Inter-
net paths between overlay nodes, dynamically selecting
paths that avoid faulty areas. The main drawback of
RON is that it does not scale very well: as the number
of participating routers N increases, the O(N2) probing
overhead becomes a limiting factor, because RON uses
all-pairs probing. The downside is that a reasonable
RON overlay can support only about 50 routers before
the probing overhead becomes overwhelming. However
RON has inspired many other approaches [17]–[19], but
no existing work has tackled the problem of building an
overlay that can be widely and efficiently deployed over
a sizable population of routers.

Thus in this paper we detail the design of SMART
(Self-MAnaging Routing overlay) that is a a self-
healing, self-optimizing and highly scalable routing
overlay that accepts customized routing policies for-
mulated by distributed applications according to their
own needs. The overlay network is formed by soft-
ware routers deployed over the Internet, and it operates
by monitoring the quality of Internet paths (latency,
bandwidth, loss rate) between overlay nodes and re-
routing packets along an alternate path when the primary
path becomes unavailable or suffers from congestion. In
particular, we investigate the use of the Cognitive Packet
Network (CPN) [20], [21] to design and evaluate the
scalable routing overlay.

In previous work, CPN has been shown to be effec-
tive for a variety of uses, including QoS optimisation,
network security enhancement and energy savings [22],
and adaptive routing of evacuees in emergency situations
[23]. The overlay we design is based on a set of proxies
installed at different Cloud servers, or they may be in
other servers across the network, so that the overlay
itself operates over these proxies from some source
to destination in source routed manner, while the flow
of packets between proxies travels in conventional IP
mode. The routing between proxies provides QoS-driven
source routing, and performs self-improvement in a
distributed manner by learning from QoS measurements
gathered on-line, and discovering new routes [20].

This data driven intercontinental packet routing
scheme constantly, say every two minutes, collects
round-trip delay data at the overlay nodes; it then makes
scalable distributed decisions using a machine learning
approach from this massive amount of data. In view
of the N overlay nodes used in our experiments, every
two minutes the system may collect up to N2 data
points. Thus over 24 hours with 20 overlay nodes, each
checking connectivity and round-trip-delays (RTT) with
19 other nodes, the network can collect up to some
2.7×105 data points per day. However, our work shows
that most of the benefit of the technique is achieved
when only a small number of alternate paths are tested,
so that there can be considerable reduction in complexity
of data processing and decision making. Furthermore,
it is also possible to use the full CPN scheme for the
overlay, which means that only the best one-overlay-hop
connections are probed, as when CPN seeks the paths
with the best QoS across a large network.

The routing decisions are made on-line at each proxy
of the overlay network based on adaptive learning tech-
niques using the random neural network (RNN) [24].
Each overlay node uses a RNN which is trained using
Reinforcement Learning with the data collected at the
node itself, while intermediate IP routers proceed using
standard Internet routing.

The rest of this paper is organized as follows. Sec-
tion II describes SMART, our self-healing and self-
optimizing routing overlay. Section III is devoted to the
adaptive learning techniques we use in SMART, based
on the random neural network in order to learn the
optimal routes in the overlay with a modest monitoring
effort. Section IV presents the experimental results we
obtain with an intercontinental overlay network, and
Section VI draws some conclusions and suggests further
work.
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II. SMART: A SELF-HEALING AND
SELF-OPTIMIZING ROUTING OVERLAY

Fig. 2. Architecture of the Autonomic Communication Overlay:
the Overlay Nodes used by SMART exchange packet streams via
the Internet using the Internet Protocol (IP) either directly, or via
intermediate Overlay Nodes. When a SMART path uses multiple
Overlay Nodes, IP is used between adjacent Overlay Nodes.

As shown in Figure 2, the SMART overlay network is
formed by software agents that are deployed at Virtual
Machines (VM) in Cloud sites, and possibly at other
servers connected to the Internet:
• On each VM, a Transmission (TA) and Reception

Agent run together with various Applications or
tasks. The Proxy, on the other hand acts as the
front-end between the VM and the overlay network.

• Each VM’s software router is the Proxy that mon-
itors the quality of the overlay paths towards other
destinations, selects the best paths, and forwards
the packets over these paths.

• The TA receives the packets that are being sent to
other Applications at other sites by an Application
running in the same VM. The TA forwards the
packets to the local Proxy using IP-in-IP encapsu-
lation. The Proxy will then handle the forwarding
of the packet towards the destination Application a
some other VM.

• The RA receives packets from the local Proxy, de-
enpasulates and delivers them to the appropriate
Application in the VM. The TA, RA and Proxy
allow us to control the path of the packets through
the network, without the applications being aware
that their data flows are routed by the overlay.

The Proxy is the interface for packets into the VM, but
it also acts as an intermediate software router for the
overlay as described in Figure 3. It is constituted of
three software agents:
• The Monitoring Agent: monitors the quality of

the Internet paths between the local cloud and the

other clouds in terms of latency, bandwidth, and
loss rate. The MA can be queried by the routing
agent in order to discover the quality of a path
according to a given metric, and can be configured
to monitor the availability of a path at regular 2
minute intervals.

• The Routing Agent: drives the monitoring agent
and uses the data it collects to discover an optimal
path (e.g., low-latency, high-throughput, etc.) with
minimum monitoring effort, and writes the optimal
path for a given destination into the routing table
of the forwarding agent.

• The Forwarding Agent: forwards each incoming
packet to its destination on the path it was in-
structed to use by the RA. We use source routing,
that is, the routing table of the source proxy de-
scribes the complete path between overlay nodes
proxies to be followed by a packet to reach its
destination, while the path between proxies is deter-
mined by the conventional IP protocol. Each sub-
sequent Proxy determines the next Proxy from the
information contained in the SMART header. The
final Proxy forwards the packet to the appropriate
RA, that delivers it to the destination Application.

Fig. 3. Interactions between the entities constituting the proxy.

In this architecture, the routing/forwarding of a packet
proceeds as shown in Figure 4. When a packet is sent by
a source task to a destination task located in a different
cloud, it is first intercepted and forwarded to the TA.
The TA uses IP-in-IP encapsulation to forward an altered
packet to the Proxy. The payload of the altered packet is
the original packet, plus an additional SMART header.
Upon reception of the SMART packet, the routing agent
of the Proxy looks-up its routing table in order to
determine the path to the destination. The sequence of
intermediate proxies is written in the SMART header,
and then the SMART packet is forwarded to the first one
of these proxies. Each intermediate proxy then forwards
the packet to the next hop on the path, until the final
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proxy is reached. When this happens, the packet is
forwarded to the RA of the destination VM. The RA
de-encapsulates the SMART packet and forwards the
original IP packet to the destination task using a raw
socket.

Fig. 4. Details of the SMART packet forwarding process.

The optimal path to a destination cloud is found using
active monitoring. The monitoring agent of a proxy
regularly measures the latency to the destination cloud
by sending probe packets along paths to that destination.
Each probe packet is time-stamped by each intermediate
node on its way forward and on its way back, so that
the source proxy can easily deduce the latency of each
segment of the path. Note that the size of the overlay
network we are using, and the measurements at 2 minute
intervals imply that 2.7 × 105 data points are being
collected per day.

III. LEARNING WITH THE RANDOM NEURAL
NETWORK

We wish to build a routing overlay that can be widely
deployed over a large population of routers, implying
that the monitoring effort (that is, the number of probed
links per time slot) should grow at most linearly with the
number of nodes of the overlay. Instead of requiring a
performance guarantee at each time step, we look for an
online decision algorithm that uses a limited monitoring
effort but achieves asymptotically the same average (per
round) end-to-end latency as the best path. The idea is
to design an algorithm that exploits past observations
so as to quickly learn path performance and efficiently
select the optimal path. This can be viewed as a a multi-
armed bandit problem [25], [26] in which decisions
correspond to choosing paths between the source and the
destination. At each successive time slot, the algorithm
chooses a subset of paths to probe, and measures the
sum of edge delays in the probed paths. The algorithm
then sends its packet over the minimum latency path
among those it has probed. Delays may change from
one time slot to the next one, and our goal is to probe
those paths at each time slot, whose total delay incurred
by packets traveling over the paths over time is not

significantly more than that of the best route from the
source to the destination. In other words, probing does
not cover all possible paths but only a few paths which
have been observed in previous probing steps to provide
low overall forwarding delay for packets. However, as
in the previously tested CPN routing scheme [20], we
have to widen our probing at random over other paths,
so that we do not miss out on paths whose latency has
substantially improved over recent history, and we use
Reinforcement Learning [27] to adjust the parameters of
a Random Neural Network (RNN), acting as an adaptive
critic, as first suggested in [28]. The RNN has been used
in many other applications, such as image processing
[29], [30] and virtual reality [31].

A. The Random Neural Network

The random neural network (RNN) [32], [33] is a
recurrent model, i.e. it can contain feedback loops as in
the present work, but it can also be used in feedforward
mode as with conventional Artificial Neural Networks.
It has a finite number of n interconnected neurons. Its
state is a vector k(t) = [k1(t),k2(t), . . . ,kn(t)], where
ki(t) is a non-negative integer valued random variable
representing the “potential” of the i-th neuron at time t.
The probability of the state of the RNN is denoted by
p(k, t) ≡ Pr[k(t) = k], where k = (k1, ... kn) and the
ki ≥ 0 are integers. Its stationary probability distribution
function, when it exists, is p(k) ≡ limt→∞ p(k, t).

A neuron i of the RNN is said to be excited whenever
ki(t) > 0, in which case it can fire and send signals at
an average rate ri, with exponential, independent and
identically distributed inter-spike intervals. Spikes will
go from neuron i to neuron j with probability p+

i,j as
excitatory spikes, and with probability p−i,j as inhibitory
spikes, where

∑n
j=1 p

+
i,j +p−i,j +di = 1, i = 1, . . . , n,

and di is the probability that the fired spike is lost in
the network or that it leaves the network towards some
external system.

Let w+
i,j = r(i)p+

i,j ≥ 0 and w−i,j = r(i)p−i,j ≥ 0; they
denote the emission rates of excitation and inhibition
signals from neuron i to neuron j. In addition, for any
neuron i, exogenous excitatory, and inhibitory spikes,
can enter the neuron from outside the network at Poisson
rates denoted by Λi and λi, respectively. By its no-
linearity, the mathematical structure of a RNN differs
from that of widely used queueing systems such as the
Jackson network or the BCMP model [34], [35].

However, despite this major difference (and the non-
existence of properties such as quasi-reversibility of the



5

RNN model equations), it has been shown to have a
product form solution [32] given by:

p(k) =

n∏
i=1

(1− qi) qki
i , qi =

λ+
i

r(i) + λ−i
, (1)

where qi limt→∞ Pr[ki(t) > 0] is the stationary prob-
ability that neuron i is excited, and λ+

i and λ−i , repre-
sent the total flows of excitatory and inhibitory spikes
arriving at neuron i, and satisfy a system of nonlinear
simultaneous equations:

λ+
i =

∑
j

qjw
+
j,i + Λi, λ

−
i =

∑
j

qjw
−
j,i + λi.

and qi is obtained from the solution of the following
system of non-linear equations:

qi =
λ+
i

ri + λ−i
. (2)

Since it has been proved in [32] that these equations
have an unique solution with all qi ∈ [0, 1]n, the non-
linear system (2) can be solved efficiently using the
simple fixed-point iteration:

qk+1
i ← min

[
1,

∑
j q

k
jw

+
j,i + Λi

ri +
∑

j q
k
jw
−
j,i + λi

]
, (3)

starting with the initial values q0
i = 0.5 for all the i =

1, .. , n.

B. Reinforcement Learning

In the following, we assume that there is a single
origin/destination pair and describe the algorithm im-
plemented by the source Proxy for learning an optimal
route to the destination Proxy. This algorithm is im-
plemented by the Routing Agent of the Proxy and is
based on a RNN. As input, we are given a set P of
N possible paths to the destination Proxy. Each neuron
of the RNN is associated to one of these paths. At
regular time intervals, the Routing Agent uses the RNN
to select K paths to the destination, monitors the quality
of these paths, and then chooses the path with the best
performance as described in Algorithm 1. While the
approach described in [20] uses both loss and delay to
select paths, here we only focus on delay or latency.

The function to be minimized is the routing “goal” G,
in this case the round-trip delay to the destination, which
can be measured. Its inverse is the reward R = G−1. Let
P(t) ⊂ P be the set of paths selected at time t by the
algorithm. Each of these paths corresponds to one of the
neurons with the highest probabilities qi at time t (line
1). The algorithm monitors the quality of these paths

Algorithm 1 Learning optimal paths with a RNN and
Reinforcement Learning.

1: for tl = 1, 2, . . . do
2: P(tl) is the set of K neurons with highest

probabilities qi at time tl.
3: Rj(tl)← reward obtained with path j.
4: p∗ ← arg maxj∈P(tl)

Rj(tl)
5: for j ∈ P(tl) do
6: νj ← Rj(tl)/T (tl).
7: if Rj(tl) ≥ T (tl) then
8: for i = 1, . . . , N do
9: ∆i ← (νj − 1) w+

i,j .
10: w+

i,j ← w+
i,j + ∆i.

11: w−i,k ← w−i,k + ∆i

N−2 , ∀k 6= j.
12: end for
13: else
14: for i = 1, . . . , N do
15: ∆i ← (1− νj) w−i,j .
16: w−i,j ← w−i,j + ∆i.
17: w+

i,k ← w+
i,k + ∆i

N−2 , ∀k 6= j.
18: end for
19: end if
20: for i = 1, . . . , N do
21: r∗i =

∑n
k=1 w

+
i,k + w−i,k.

22: w+
i,j ← w+

i,j
ri
r∗i

.
23: w−i,j ← w−i,j

ri
r∗i

.
24: end for
25: Solve the non-linear system (2)
26: T (tl+1)← β T (tl) + (1− β)Rj(tl).
27: end for
28: end for

at instants tl for successive integers l, from which it
deduces the reward Rj(tl) for each path j ∈ P(tl) (line
2). For reasons of scalability, the CPN algorithm which
is designed for an arbitrarily large network, takes the
routing decisions at the single node level, only choosing
only the next hop for the “smart packets” (SPs) that seek
the paths [20], based on the final destination of the SP.

However the algorithm we use for overlay routing
deals with relatively small overlay networks with a
small number of alternate paths for a given source to
destination pair. Thus it considers each of the monitored
full paths. Rj(tl) is used to adjust the values of the
two matrices W+ and W− based on Reinforcement
Learning, based on the decision threshold Ttl :

T (tl) = β T (ti−l) + (1− β)Rj(tl),

where β ∈ (0, 1) is a real number that is used to intro-
duce forgetfulness: a large β will give more importance
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to recent events. When round-trip delay is the goal func-
tion, T (ti) is the “exponential average” up to time ti of
the round-trip delay for the packet in that flow. To start
the learning, we first determine whether the most recent
value of the reward R(tl) is larger than the threshold
T (tl). If that is the case, then we increase significantly
the excitatory weights going into neuron j (line 10), that
was the previous winner, rewarding it for its previous
success, and increase the inhibitory weights leading to
other neurons, but in a much smaller proportion (line
11). Otherwise, if the new reward is smaller than the
previously observed threshold, we increase significantly
the inhibitory weights leading to the previous winning
neuron (line 16), punishing it for not being successful
last time, and increase in a much smaller proportion all
excitatory weights leading to other neurons (line 17) to
give other decisions a greater chance of being selected.
As in CPN [20], to avoid ever-increasing values of the
weights, we re-normalize their values (lines 20-23) after
each update:

w+
i,j ← w+

i,j ,
ri
r∗i
, w−i,j ← w−i,j

ri
r∗i
,

where

r∗i =

n∑
k=1

w+
i,k + w−i,k

We then compute the stationary probability qi that
neuron i is excited (line 25) by solving the following
system of nonlinear simultaneous equations

qi =
λ+
i

r(i) + λ−i
,

λ+
i =

∑
j

qjw
+
j,i + Λi,

λ−i =
∑
j

qjw
−
j,i + λi,

as described in Section III-A. Finally, we update the
decision threshold T (tl) (line 26).

IV. EXPERIMENTAL RESULTS

We now describe the results that we obtained with the
proposed algorithm during an Internet-scale experiment,
where we used 20 Overlay Nodes of the NLNog ring
shown in Figure 5. Note that these overlay nodes are
interconnected by literally hundreds of Internet nodes
which are unknown to us or the overlay, and which
support the overlay itself.

We first measured the latency and loss rates between
all pairs of nodes every two minutes, communicating
through the Internet, for a period of one week using

the ICMP-based ping utility. Furthermore, when five
consecutive packets were lost between a specific pair
of nodes, we considered that the particular source was
disconnected from that destination. The path latency was
measured as the round-trip time (RTD), i.e. the length
of time it takes for a packet to be sent to its destination,
plus the length of time it takes for the corresponding
acknowledgment (ACK) packet to be received at the
source.

Fig. 5. Geographical location of the 20 Source and Destination Nodes
used in our experiments within the NLNog ring. These same nodes
are also used for our direct IP based routing measurements, and also
to evaluate the SMART Overlay Node based routing scheme.

The main observations from this Internet-scale exper-
iment based on some 2.7× 105 measurements per day,
that was carried out over a whole week (i.e. a total of
roughly 2× 106 measurements), were the following:
• There was a path outage across the Internet at least

once in the week for 65% of origin-destination
pairs, and 21% of these path outages lasted more
than 4 minutes. In fact, 11% of the outages lasted
more than 14 minutes.

• We observed that the RTD of purely IP routes
(without overlays) exhibits strong and unpre-
dictable variations: see Figure 6, and these vari-
ations can be as large as 500%.

• Throughout our experiments, the IP route was very
clearly not the minimum latency path in 50% of
the cases, as shown in Figure 7.

• There was always at least one origin to destination
pair whose latency could be reduced by more than
76% by selecting an alternate path to the IP route,
by using one or more overlay nodes.

– Surprisingly enough, as shown in Figure 7, for
30% of the cases the optimal path hadonly
2 Overlay-Hops. This shows that a limited
deviation from IP can actually produce much
better QoS than IP itself.

– Then, a natural question is whether it is enough
to consider routes of at most two Overlay-
Hops.
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– Interestingly, in 20% of the cases the optimal
path was a 3 or 4 Overlay-Hop path.

– However, on average, the relative difference in
measured delay between the optimum path and
the best 2 Overlay-Hop path was only 3.38%.

– However, as shown in Figure 8, for some ori-
gin to destination pairs, there was a significant
benefit in using a path which had more than
two overlay hops.

• Similarly, more than 11% of the IP routes were
observed to have a loss rate greater than 1%. An
in particular, by selecting paths via the overlay that
had a different path than those proposed by IP, it
was possible to have no packet loss at all.

These results have also shown that path outages are
routine events in the Internet. Furthermore, the paths
selected by IP routing are strongly suboptimal. This
Internet-scale experiment confirmed observations sim-
ilar to those made in previous studies.

Fig. 6. The RTD in milliseconds using the IP protocol, given in
averages over successive 2 minute intervals over an observation period;
each unit along the x-axis corresponds to successive 2 minute intervals
over the long time period being shown. The connections measured are
between Chile-Canada (left) and Japan-Poland (right), and we observe
the large variation in average RTD depending on the time period being
considered.

As we will now see, the CPN or RNN based algo-
rithm that exploits Overlay Nodes allows a significant
improvement in QoS, more specifically a significant
decrease in round-trip delay, with a very modest moni-
toring and computational effort.

V. AN EXPERIMENT IN DECREASING THE
ROUND-TRIP DELAY (RTD)

In the next experiment, we simplify the routing
scheme so that we only consider the direct IP route and
2 Overlay-Hop routes. Therefore the number of possible
overlay paths between an Overlay Source (OS) and
Overlay Destination (OD) is N = 19. Furthermore for
a given connection, the algorithm chooses two alternate
overlay paths to monitor, and selects the one with the
minimum latency.
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Fig. 7. Percentage of instances when the overlay path that minimises
RTD, which uses IP paths between Overlay Nodes, is observed to
include 1, 2, 3 or 4 Overlay Hops. We see that at most two overlay
hops cover most of the optimal cases.
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Fig. 8. Percentage of average RTD, for the best 2-hop path relative to
the minimum RTD path, for certain origin to destination pairs, where
RTD is averaged over the successive 2 minute measurement intervals.

Thus from a given source node, the algorithm will
measure at most 4 links per measurement round. The
resulting observed average delays are summarized in
Table I.

These average values do not truly measure the gains
obtained in the pathological routing situations we seek
to improve. Thus, in Table II we present some examples
for which the system provides significant gains, despite
the partial coverage of the overlay topology.

On the other hand, Figure 9 shows the RTD between
the nodes in Japan and Chile over 5 successive days.
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Direct 2-hop Overlays
% non-optimal instances 50.08% 16.20%

Av’ge % diff. above min. latency 11.1% 4.24%
TABLE I

NON-OPTIMAL RTDS FOR ALL THE MEASUREMENTS: IP VS.
SMART ROUTING WITH 2-HOP OVERLAYS. 16% OF 2-HOP

OVERLAYS AND 50% OF IP PATHS ARE NON-OPTIMAL. RTDS FOR
IP CAN SUBSTANTIALLY EXCEED THE MINIMA AND AVERAGES

OVER ALL MEASUREMENTS.

Direct IP K=2
Singapore-Israel 26.86 0.34

Japan-Chile 60.73 0.08
Australia-Chile 26.03 0.30

Norway-Singapore 23.35 1.15
Poland-Brazil 24.32 0.39

Ireland-Moscow 119.39 0.18
Israel-Moscow 48.39 0.17

TABLE II
RELATIVE GAP IN PERCENTAGE OF RTD, TO THE MINIMUM

OBSERVED RTD, FOR SOME PATHOLOGICAL ORIGIN TO
DESTINATION PAIRS.

The RTD of the direct IP route is about 400 ms, whereas
the RTD of the minimum latency path is about 250 ms.
As can be seen, the RNN-based algorithm learns very
quickly which is the minimum latency path and tracks
this path until the end of the 5 days. Figure 10 shows
the RTDs of the IP route, of the optimal path and of the
RNN-based algorithm over the first 20 minutes. We also
notice that it takes only 12 minutes for our algorithm to
learn the optimal route.
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Fig. 9. RTD in millliseconds measured for the Japan-Chile connection
in an experiment lasting 5 successive days. We see that measured RTD
for the the SMART routing policy (in black dots) follows the values
of the optimal (i.e. minimum) RTD very closely.

Figures 11 and 12 provide a similar comparison for
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Fig. 10. RTD in milliseconds for the Japan-Chile connection for 20
successive 2-minute measurements, over the first 20 minutes of the
experiment reported in Figure 9. We see that the SMART policy
is learning right at the beginning, oscillating between the RTD
measurements for IP (in blue) and the optimum in red. Howeve, after
a relatively short time interval, SMART settles to closely following
the optimum.

the RTD between Norway and Singapore. The RTD of
the direct IP route is about 340 ms, whereas the RTD
of the minimum latency path is about 270 ms. Here
again, the RNN-based algorithm learns the minimum
latency path very quickly. However, it does not track
the minimum latency path as well as in the previous
case, and we can notice some discrepancies between the
minimum RTD and the RTD of the overlay during the
first day, between hours 3 and 5. Figure 12 shows that
perturbations can last for a some tens of minutes. Never-
theless, the overlay always provides better performance
than what is offered by the IP routing protocols.

VI. CONCLUSIONS

This paper observes that intercontinental IP routes
are far from optimal with respect to QoS metrics such
as delay and packet loss, and that they may also be
subject to outages, and then develops a Big Data and
Machine Learning approach called SMART, to improve
the overall QoS of Internet connections, while still
exploiting the existing IP protocol with path variations
offered by an overaly network. SMART uses an adaptive
overlay system that creates a limited modification of IP
routes resulting in much lower packet forwarding delays
and loss rates.

The overlays we consider include very few overlay
hops, in fact at most four, and IP is seamlessly used
for transporting packets between the overlay nodes.
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Fig. 11. Measured RTD in milliseconds for the Norway-Singapore
connection over 5 successive days. Again we observe that the RTD
for the SMART scheme (dotted line) closely tracks the measurements
for the optimal paths (red), even when they provide the same results
as IP routing (blue).
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Fig. 12. RTD in milliseconds for the Norway-Singapore connection
between hours 3 and 5 of the experiment of Figure 11. We notice that
in this early stage of the experiment, SMART is unable to achieve the
optimum (red) RTD, while from the previous Figure 11, we know that
as we enter the later stages of the experiment the optimum is definitely
attained thanks to the use of the learning offered by the RNN based
Reinforcement Learning algorithm.

The overlay routing strategy is inspired from Cogni-
tive Packet Network (CPN) routing, where paths are
dynamically selected using a Random Neural Network
(RNN) based adaptive learning algorithm that exploits
smart search and probing in order to select the best
paths. In this particular case, each connection explores
a small number of alternate paths that are offered by the

overlay network. However, all of this requires constant
measurements between the overlay nodes resulting in
hundreds of thousands of data points being collected in
a single day, as well as a fast (RNN based) machine
learning algorithm.

The proposed system has been implemented and
tested in an intercontinental overlay network that in-
cludes Europe, Asia, North and South America, and
Australia, composed of 19 overlay nodes, and we have
observed that with at no more than two overlay nodes in
each connection, round trip packet delays are generally
very close within a few percent, to the round trip delays
observed with three or four overlay nodes per connec-
tion. We further observe that significant improvements
can also be obtained when the RNN based adaptation
uses no more than two alternate paths which emerge as
the best, as a result of a wider search.

This research can be extended in several directions.
An issue to be considered is that of reducing the amount
of data that is stored, especially when measurements
may have to be stored and exploited concurrently at
multiple locations in the network because paths will
typically share overlay nodes and IP network segments.
One approach for consideration in future work is to
resequence the data [36] so as to drop data items before
they enter into the learning algorithm if they have
been superseded by fresher and more relevant items.
Another important direction is to consider bandwidth
optimisation or bandwidth guarantees, in addition to
delay minimisation, as is done in recent work with CPN
where applications require asymmetric QoS (delay for
upstream and bandwidth for downstream) [37], as well
as energy consumption aspects in the network as a whole
[38]. Another question of interest would be to consider
the time is takes [39], [40], as well as the energy
consumption, for finding users or other resources such
as virtual machines or files, in a large overlay network,
prior to setting up connections to the appropriate overlay
node or to a destination node that can be reached from
several overlay nodes.

The results we have obtained have essentially consid-
ered paths of at most two overlay hops. This may not be
sufficient for some source to destination pairs, especially
with complicated intercontinental patterns of connec-
tivity: for instance Africa can be reached in several
different ways, over the Mediterranean Sea, through the
Middle East, or along its Atlantic Coast. Thus we may
need to consider more extensive probing schemes, that
use much more data collected at (say) one or two hour
intervals, which may include probing of all overlay node
pairs. Using such data we may be able to determine the
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shortest-delay paths between each source to destination
pair, as a means to improve the effectiveness of the
adaptive schemes that we propose in this paper. Indeed,
we believe that data driven observation and adaptive
control of the large scale Internet is an important area
of future work both for researchers and for network
operators.
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