Determinability and state estimation for switched differential-algebraic equations

Abstract : The problem of state reconstruction and estimation is considered for a class of switched dynamical systems whose subsystems are modeled using linear differential-algebraic equations (DAEs). Since this system class imposes time-varying dynamic and static (in the form of algebraic constraints) relations on the evolution of state trajectories, an appropriate notion of observability is presented which accommodates these phenomena. Based on this notion, we first derive a formula for the reconstruction of the state of the system where we explicitly obtain an injective mapping from the output to the state. In practice, such a mapping may be difficult to realize numerically and hence a class of estimators is proposed which ensures that the state estimate converges asymptotically to the real state of the system.
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger
Contributeur : Aneel Tanwani <>
Soumis le : jeudi 9 février 2017 - 10:10:08
Dernière modification le : samedi 27 octobre 2018 - 01:30:26
Document(s) archivé(s) le : mercredi 10 mai 2017 - 12:48:53


Fichiers produits par l'(les) auteur(s)



Aneel Tanwani, Stephan Trenn. Determinability and state estimation for switched differential-algebraic equations. Automatica, Elsevier, 2017, 76, pp.17 - 31. 〈10.1016/j.automatica.2016.10.024〉. 〈hal-01462885〉



Consultations de la notice


Téléchargements de fichiers