Towards Robotic MAGMaS: Multiple Aerial-Ground Manipulator Systems

Abstract : In this paper we lay the foundation of the first heterogeneous multi-robot system of the Multiple Aerial-Ground Manipulator System (MAGMaS) type. A MAGMaS consists of a ground manipulator and a team of aerial robots equipped with a simple gripper manipulator the same object. The idea is to benefit from the advantages of both kinds of platforms, i.e., physical strength versus large workspace. The dynamic model of such robotic systems is derived, and its characteristic structure exhibited. Based on the dynamical structure of the system a nonlinear control scheme, augmented with a disturbance observer is proposed to perform trajectory tracking tasks in presence of model inaccuracies and external disturbances. The system redundancy is exploited by solving an optimal force/torque allocation problem that takes into account the heterogeneous system constraints and maximizes the force manipulability ellipsoid. Simulation results validated the proposed control scheme for this novel heterogeneous robotic system. We finally present a prototypical mechanical design and preliminary experimental evaluation of a MAGMaS composed by a kuka LWR4 and quadrotor based aerial robot.
Document type :
Conference papers
2017 IEEE International Conference on Robotics and Automation, May 2017, Singapore, Singapore. 2017
Liste complète des métadonnées

https://hal.laas.fr/hal-01476813
Contributor : Antonio Franchi <>
Submitted on : Saturday, February 25, 2017 - 9:54:45 PM
Last modification on : Thursday, January 11, 2018 - 6:26:55 AM
Document(s) archivé(s) le : Friday, May 26, 2017 - 12:21:37 PM

File

2017d-StaMohBicPraFra-preprint...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01476813, version 1

Citation

Nicolas Staub, Mostafa Mohammadi, Davide Bicego, Domenico Prattichizzo, Antonio Franchi. Towards Robotic MAGMaS: Multiple Aerial-Ground Manipulator Systems. 2017 IEEE International Conference on Robotics and Automation, May 2017, Singapore, Singapore. 2017. 〈hal-01476813〉

Share

Metrics

Record views

101

Files downloads

196