C. Bayer and J. Teichmann, The proof of Tchakaloff's theorem, Proceedings of the American mathematical society, pp.3035-3040, 2006.

G. E. Box and J. S. Hunter, Multi-factor experimental designs for exploring response surfaces. The Annals of Mathematical Statistics, pp.195-241, 1957.
DOI : 10.1214/aoms/1177707047

URL : http://doi.org/10.1214/aoms/1177707047

H. Dette and W. J. Studden, The theory of canonical moments with applications in statistics, probability, and analysis, 1997.

N. Gaffke, U. Graßhoff, and R. Schwabe, Algorithms for approximate linear regression design with application to a first order model with heteroscedasticity, Computational Statistics & Data Analysis, vol.71, pp.1113-1123, 2014.
DOI : 10.1016/j.csda.2013.07.029

D. Henrion, J. Lasserre, and J. Löfberg, GloptiPoly 3: moments, optimization and semidefinite programming, Optimization Methods and Software, vol.24, issue.4-5, pp.4-5761, 2009.
DOI : 10.1080/10556780802699201

URL : https://hal.archives-ouvertes.fr/hal-00172442

J. Kiefer, General equivalence theory for optimum designs (approximate theory) The annals of Statistics, pp.849-879, 1974.

M. Krein and A. Nudelman, The Markov moment problem and extremal problems, volume 50 of Translations of mathematical monographs, 1977.

J. B. Lasserre, Moments, positive polynomials and their applications, volume 1 of Imperial College Press Optimization Series, 2010.
DOI : 10.1142/p665

J. Lasserre, A generalization of Löwner-John's ellipsoid theorem, Mathematical Programming, pp.559-591, 2015.

J. B. Lasserre and T. Netzer, SOS approximations of nonnegative polynomials via simple high degree perturbations, Mathematische Zeitschrift, vol.38, issue.1, pp.99-112, 2007.
DOI : 10.1007/978-3-662-04648-7

J. Lasserre and . Pauwels, Sorting out typicality with the inverse moment matrix SOS polynomial, Advances in Neural Information Processing Systems 29, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01331591

M. Ledoux, Differential Operators and Spectral Distributions of Invariant Ensembles from the Classical Orthogonal Polynomials. The Continuous Case, Electronic Journal of Probability, vol.9, issue.0, pp.177-208, 2004.
DOI : 10.1214/EJP.v9-191

A. S. Lewis, Convex Analysis on the Hermitian Matrices, SIAM Journal on Optimization, vol.6, issue.1, pp.164-177, 1996.
DOI : 10.1137/0806009

J. Lofberg, YALMIP : a toolbox for modeling and optimization in MATLAB, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), pp.284-289, 2004.
DOI : 10.1109/CACSD.2004.1393890

I. Molchanov and S. Zuyev, Optimisation in space of measures and optimal design, ESAIM: Probability and Statistics, pp.12-24, 2004.
DOI : 10.1007/BF01442543

A. Mosek, The MOSEK optimization toolbox for matlab manual, p.2015

J. Nie, The $${\mathcal {A}}$$ A -Truncated $$K$$ K -Moment Problem, Foundations of Computational Mathematics, vol.14, issue.6, pp.1243-1276, 2014.
DOI : 10.1017/S0962492901000071

D. Papp, Optimal Designs for Rational Function Regression, Journal of the American Statistical Association, vol.67, issue.2, pp.400-411, 2012.
DOI : 10.1007/b105056

URL : http://arxiv.org/pdf/1009.1444.pdf

F. Pukelsheim, Optimal design of experiments, SIAM, 2006.
DOI : 10.1137/1.9780898719109

G. Sagnol, On the semidefinite representation of real functions applied to symmetric matrices, Linear Algebra and its Applications, vol.439, issue.10, pp.2829-2843, 2013.
DOI : 10.1016/j.laa.2013.08.021

G. Sagnol and R. Harman, Computing exact D-optimal designs by mixed integer second-order cone programming. The Annals of Statistics, pp.2198-2224, 2015.
DOI : 10.1214/15-aos1339

URL : http://arxiv.org/pdf/1307.4953

C. Scheiderer, Semidefinitely representable convex sets. ArXiv e-prints, 2016.

B. Torsney, W-Iterations and Ripples Therefrom, Optimal Design and Related Areas in Optimization and Statistics, pp.1-12, 2009.
DOI : 10.1007/978-0-387-79936-0_1

L. Vandenberghe, S. Boyd, and S. Wu, Determinant Maximization with Linear Matrix Inequality Constraints, SIAM Journal on Matrix Analysis and Applications, vol.19, issue.2, pp.499-533, 1998.
DOI : 10.1137/S0895479896303430