Identifying and constructing leading indicators for monitoring and controlling performance of engineering projects
Li Zheng, Claude Baron, Philippe Esteban

To cite this version:

HAL Id: hal-01496495
https://hal.laas.fr/hal-01496495
Submitted on 22 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Identifying and constructing leading indicators for monitoring and controlling performance of engineering projects

Li ZHENG (lzheng@laas.fr)
Claude BARON, Philippe ESTEBAN
LAAS-CNRS, Université de Toulouse, INSA, UPS, Toulouse, France

PMSs (Performance measurement systems)

- Scholar theories and models
- Capabilities of Support softwares

PMSs classical models:
- Performance Measurement Matrix (1989);
- Performance Pyramid System (1991);
- Balanced Scorecard (1992, 1996);
- Integrated Performance Measurement System (1997);

Gap analysis:
1. Balanced scorecard has been used across the world, whereas many other frameworks have tended only to have regional appeal;
2. The practices in industries are not following the rapid academic rhythm.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Fitting rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-perspectives; Connected to multiple data sources; VPM; KPIs-based.</td>
<td>High fitting rates (≥ 60%)</td>
</tr>
<tr>
<td>Balanced; integrated; strategy-relevant; stakeholders focus; Dynamic; PPS; SCPMM, OM-PMSs, PMs for SMEs</td>
<td>Low fitting rates (<60%)</td>
</tr>
</tbody>
</table>

SEM (Systems engineering measurement)

Characteristics:
- Providing visibility into expected project performance and potential future states;
- Providing predictive analysis based on trend information or significant correlation.

18 SE Leading indicators

<table>
<thead>
<tr>
<th>Requirements Trends</th>
<th>Risk treatment trends</th>
</tr>
</thead>
<tbody>
<tr>
<td>System definition change backlog trend</td>
<td>Systems engineering staffing and skills trends</td>
</tr>
<tr>
<td>Interface trends</td>
<td>Process compliance trends</td>
</tr>
<tr>
<td>Requirements Validation Trends</td>
<td>Technical Measurement Trends</td>
</tr>
<tr>
<td>Requirements Verification Trends</td>
<td>Facility and equipment availability trends</td>
</tr>
<tr>
<td>Work Product Approval Trends</td>
<td>Defect/error trends</td>
</tr>
<tr>
<td>Review Action Closure Trends</td>
<td>System affordability trends</td>
</tr>
<tr>
<td>Technology Maturity Trends</td>
<td>Architecture trends</td>
</tr>
<tr>
<td>Risk Exposure Trends</td>
<td>Schedule and cost pressure</td>
</tr>
</tbody>
</table>

Preliminary mapping result after reading through it can be concluded that it’s feasible to apply some measurement methods in Systems Engineering like SE leading indicators in the general project management.

10 Knowledge areas (PMBoK)

- Project integration
- Project scope
- Project time
- Project cost
- Project quality
- Project communications
- Project risks
- Project procurement
- Project human resources
- Project stakeholders

18 SE Leading indicators vs. 10 Knowledge areas

Model input

Improving Project Performance Measurement

Lagging indicators are dominant in the PPM, but leading indicators are not yet well developed.