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Abstract: The paper presents an observer-based event-triggered control strategy for linear systems
subject to input cone-bounded nonlinearities by using only available measurable variables. Sufficient
conditions based on linear matrix inequalities are proposed to ensure the asymptotic stability of the
closed loop and the avoidance of Zeno behavior in an emulation context. Based on these conditions, a
convex optimization problem to compute the parameters of the event-trigger rule aiming at reducing the
number of control updates is proposed. The approach is illustrated on a numerical example that considers
the control of a linear system with a logarithmic input quantization constraint.
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1. INTRODUCTION

In the context of the implementation of modern control sys-
tems through digital communication networks, event-triggering
strategies have been proposed mainly to deal with commu-
nication, energy consumption and computational constraints
(see, for example, Postoyan and Girard (2015); Postoyan et al.
(2015); Tabuada (2007); Heemels et al. (2012) and references
therein.) In the event-triggered control framework, one can
basically consider two approaches. The first one, which cor-
responds to the so-called emulation problem, considers that the
controller is given a priori (see, for example, Heemels et al.
(2012), Wang and Lemmon (2008), Postoyan et al. (2015),
Seuret and Prieur (2011) Abdelrahim et al. (2016) and refer-
ences therein). In this case, the focus is dedicated to the design
of the event-triggering rule or function that leads to a stable
closed-loop behavior while avoiding the occurrence of Zeno
phenomenon. The second approach, which is referred as a co-
design problem, performs the design of both the controller and
the event-triggering rule, simultaneously, and is addressed in a
few papers (Aström (2008); Seuret et al. (2013, 2016), Heemels
et al. (2013); Abdelrahim et al. (2014); Antunes et al. (2012)).

A large amount of papers addressing asymptotic stability of
event-trigger control schemes consider state-feedback laws (see
for instance Tabuada (2007); Heemels et al. (2012); Lehmann
and Lunze (2011b); Wu et al. (2014); Aranda-Escolastico et al.
(2015); Wang and Lemmon (2008); Moreira et al. (2016)).
In this case, it is in general easier to prove stability and that
Zeno behavior does not happen. However, in most practical
applications the full state measurement is not available or even
possible. The fact of using available information (measured or
local signals) in order to build the event-triggered control law,
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from an emulation or a co-design point of view is a challeng-
ing problem: see, for example, Lehmann and Lunze (2011a),
Almeida et al. (2012), Abdelrahim et al. (2016), Donkers and
Heemels (2012), Tallapragada and Chopra (2012), Postoyan
et al. (2015), Wang and Lemmon (2011), Heemels et al. (2012),
Xia and Fei (2013) and references therein. On the other hand,
we can also notice that most of the works in the literature con-
sider linear plants. Some papers dealing with generic results for
nonlinear systems are Tabuada (2007), Postoyan et al. (2015),
Abdelrahim et al. (2016).

In the current paper we focus on the emulation design of event-
triggered control for a particular class of nonlinear systems,
which regards linear plants subject to input cone-bounded non-
linearities. This type of input nonlinearities can model, for in-
stance, practical actuators nonlinearities or imperfections (e.g.
saturation, deadzone, hysteresis, etc), as well as implementation
control constraints such as quantization effects. Moreover, we
are concerned by the use of only local information or mea-
surable signals. To do so, a state observer-based approach is
considered. In this context, we follow the same vein as in Tal-
lapragada and Chopra (2012) to tackle the design of the event-
triggering strategy for observer-based state feedback based on
the decrease of a Lyapunov function. Recall that in the event-
triggered control context, the plant evolves in continuous time,
whereas the control signal is updated depending on discrete-
time events. Then, the resulting closed-loop system can be
cast as a hybrid or impulsive system. Instead of considering
the classical hybrid framework to study mixed continuous and
discrete dynamics as defined in Goebel et al. (2012), we use an
alternative direction as proposed in Tarbouriech et al. (2016b),
Tabuada (2007). In this case, sufficient conditions based on
linear matrix inequalities (LMI) are proposed to ensure the
global asymptotic stability of the origin of the nonlinear closed-
loop system under the event-trigger control strategy. Moreover,
following the idea presented in Mazo et al. (2010), Zeno be-
haviors are avoided thanks to the introduction of a minimum



dwell-time, which is explicitly forced as a design parameter of
the LMI conditions. These conditions are then cast in convex
optimization problems to compute the parameters of the event-
trigger rule aiming at reducing the number of control updates.
The paper can then be considered as a comprehensive version
of Tarbouriech et al. (2016b), since we extend the class of
systems under consideration to some particular class of non-
linear systems. The originality of the paper relies on the fact
that the approach is based on the satisfaction of a continuous-
time stability criterion as well as a discrete-time one, in which
a minimum dwell-time is a direct tunable parameter.

The paper is organized as follows. In Section 2, the system
under consideration is described, together with the problem we
intend to solve. Conditions to solve the event-triggered control
problem in an emulation context are proposed in Section 3 first
in a generic format and second through linear matrix inequal-
ities, in which the dwell-time appears as a tuning parameter.
Section 4 provides a simple optimization criterion, in order to
cope with the implicit objective of reducing the number of con-
trol updates by playing on the event-trigger rule parameters. In
Section 5, an example illustrates the efficiency of the proposed
approach. Finally, Section 6 presents some concluding remarks
and directions for potential future works.

Notation. Z, Rn, Rn×n denote respectively the sets of integers,
n-dimensional vectors and n × m matrices. For any matrix
A, A′ denotes its transpose and He{A} = A + A′. For any
square matrix A, trace(A) denotes its trace. For two symmetric
matrices of the same dimensions, A and B, A > B means that
A−B is symmetric positive definite. I and 0 stand respectively
for the identity and the null matrix of appropriate dimensions.
For a partitioned matrix, the symbol ∗ stands for symmetric
blocks. ‖ . ‖ stands for the Euclidean norm.

2. PROBLEM STATEMENT

2.1 System data

Consider the following continuous-time plant:{
ẋp(t) = Apxp(t)+Bpu(t)+Bp f f (u(t)),
yp(t) = Cpxp(t)+Dp f f (u(t)), (1)

where xp(t) ∈ Rn, u(t) ∈ Rm, yp(t) ∈ Rp are the state, the
input and the output of the plant, respectively. Matrices Ap,
Bp, Bp f , Cp and Dp f are constant and of appropriate dimen-
sions. Pairs (Ap,Bp) and (Cp,Ap) are supposed to be control-
lable and observable, respectively. Function f (u) : Rm → Rl

is a nonlinearity affecting the input u. It can represent a ne-
glected nonlinearity, uncertainty or imperfection affecting the
input (Johansson and Robertsson (2002)). In other words, f (u)
allows to represent the error with respect to a linear input.
For example, in the case of magnitude saturation of the input,
f (u) corresponds to the deadzone sat(u)− u (see, for example
Tarbouriech et al. (2011), Zaccarian and Teel (2011), Turner
and Herrmann (2014)). Another interesting case, which can be
described through f (u), consists in capturing the fact that only
a part of the input is saturated whereas the other part remains
linear (see, for example, Tarbouriech et al. (2016a)). One can
also cite the case of linear systems in the presence of some
other isolated nonlinearities, such as quantization or backlash,
which can also be represented by equation (1) (see, for example,
Liberzon (2003), Tarbouriech et al. (2014), Jayawardhana et al.
(2011) and references therein). This nonlinearity is therefore

supposed to be continuous and to satisfy a cone-bounded prop-
erty (see, for example, Khalil (1992), Castelan et al. (2008)).
That means that this nonlinearity satisfies the following prop-
erty

f (u)′S( f (u)+Ru)≤ 0 (2)
where S ∈ Rl×l is any diagonal positive definite matrix. Matrix
R ∈ Rl×m is supposed to be a diagonal positive matrix that is
fixed by the designer and depends on the nonlinearity charac-
teristics. Moreover, it is assumed that Property (2) is globally
satisfied, i.e. it is valid for all u ∈ Rm.

In this paper, we consider an observer-based state feedback
controller to stabilize the plant (1) and therefore to drive the
output to zero. This controller is defined by:

˙̂x(t) = Apx̂(t)+Bpu(t)+Bp f f (u(t))−L(yp(t)− ŷ(t)),
ŷ(t) = Cpx̂(t)+Dp f f (u(t)),
u(t) = Kx̂(t),

(3)
where x̂(t)∈Rn and ŷ(t)∈Rp are the state and the output of the
observer, respectively. Furthermore, L ∈ Rn×p and K ∈ Rm×n

are the observer and controller gains, respectively.

By considering the continuous-time system described by (3),
the control design is carried out according to the separation
principle. The observer gain L is then designed to make Ap +
LCp Hurwitz. In this case, the state estimation error dynamics
is given by

ė(t) = (Ap +LCp)e(t), (4)
where e(t) = xp(t)− x̂(t) ∈ Rn, is globally asymptotically sta-
ble, i.e. limt→∞ e(t) = 0. Consequently, the estimation output
error ey(t) = Cpe(t) also asymptotically converges to zero, i.e.
limt→∞ ey(t) = 0. On the other hand, the dynamics of the ob-
server with the state feedback controller u(t) = Kx̂(t) is given
by:

˙̂x(t) = (Ap +BpK)x̂(t)+Bp f f (Kx̂(t))−Ley(t). (5)

In this paper, we want to address the problem of an aperiodic
event-triggered-based sampled-data implementation of such an
observer-based controller. This paper can be viewed as an
extension of the technique developed in Tarbouriech et al.
(2016b) to the particular class of nonlinear systems represented
by equation (1).

2.2 Sampled-data control implementation

We are interested in studying the way to implement the control
input u. We consider that u is not continuously implemented but
is updated at certain instants {tk}k∈N, which form a sequence
of strictly increasing positive scalars. The control action is
supposed to be held constant between two successive sampling
instants (tk and tk+1) through a zero order holder. Nevertheless,
differently from classical digital control approaches, the sam-
pling interval tk+1− tk is not assumed to be constant but can be
seen as an additional control action.

Thus, the closed-loop system can be represented by ẋp(t) = Apxp(t)+Bpu(tk)+Bp f f (u(tk)),
˙̂x(t) = Apx̂(t)+Bpu(tk)+Bp f f (u(tk))−Ley(t),

u(tk) = Kx̂(tk), ∀t ∈ [tk , tk+1).
(6)

Taking into account (4), performing a change of coordinates,
the closed-loop dynamics (6) can be expressed in terms of x̂
and e, as follows:




˙̂x(t) = (Ap +BpK)x̂(t)+Bpδ(t)

+Bp f f (Kx̂(t)+δ(t))−Ley(t),
ė(t) = (Ap +LCp)e(t),

(7)

where we use the same formulation as in Tabuada (2007) to
define δ(t):

δ(t) = u(tk)−u(t) = K(x̂(tk)− x̂(t)). (9)

This function δ(t) can be seen as a measure of the difference
between the fictive continuous-time control value and its sam-
pled and held version, which is currently implemented. Note
that δ(t) depends only on the observer variables and is therefore
available at the controller node.

2.3 Problem formulation

This work focuses on the event-triggered implementation of the
controller represented by (3). Then, an event generator algo-
rithm has to be included in the controller to decide whether or
not the control input has to be updated, based on the available
information. Adapting the event-triggered control strategy pro-
posed in Tallapragada and Chopra (2012, 2013), the sampling
instants are determined from the following logic:

tk+1 = min{t ≥ tk +T, s.t. g(δ(t),ya(t))≥ 0}. (10)
where ya represents the vector of available information to
the controller (which corresponds in our case to ya(t) =
[x̂(t)′,ey(t)′]′) and the function g : Rm ×Rn+p → R has to
be efficiently defined such that the asymptotic stability of the
closed-loop system (7) under the event-triggered rule described
in (10) is ensured. Moreover, note that the trigger criterion given
by (10) ensures that the next sampling time will occur at least T
time units ahead the last one. Thus, T can be seen as a minimal
dwell-time, which allows to prevent Zeno solutions. For t ≥ tk+
T the control is not be updated until g(δ(t),ya(t))≥ 0.

3. EVENT-TRIGGERED STRATEGY DESIGN

Our aim is to provide an event-triggered strategy to update
the control signal applied to the plant based solely on avail-
able signals, that is, using only u(t), f (u(t)), x̂(t) and yp(t).
According to (10), this corresponds to design T and g in
order to ensure the asymptotic stability of the sampled-data
system (6). To do so, we first provide a general formulation,
inspired from Tallapragada and Chopra (2012), Tallapragada
and Chopra (2013), which corresponds to extend Theorem 1
of Tarbouriech et al. (2016b). With this aim, consider the aug-
mented state x =

[
x̂′ e′

]′ ∈ R2n.
Theorem 1. Consider a positive scalar T , a function g : Rm×
Rn+p→ R and the triggering rule

tk+1 = min{t ≥ tk +T, s.t. g(δ(t),ya(t))≥ 0} (11)

with ya(t) =
[

x̂(t)
ey(t)

]
=

[
I 0
0 Cp

]
x(t).

Consider a positive definite function V , for which there exist
two positive scalars ε1 and ε2 such that, for any x ∈ R2n, we
have

ε1 ‖ x ‖2≤V (x)≤ ε2 ‖ x ‖2, (12)
and assume, in addition, that the function V (x) satisfies, for all
t ∈ [tk +T , tk+1) and for all k ∈ N
V̇ (x(t))−g(δ(t),ya(t))−2 f (u(tk))′S( f (u(tk))+Ru(tk))< 0,

(13)

and, for all k ∈ N
∆VT (x)−2 f (u(tk))′S( f (u(tk))+Ru(tk)) < 0, (14)

with ∆VT (x) =V (x(tk +T ))−V (x(tk)).

Then, the origin of system (7) with the triggering rule (11) is
globally asymptotically stable and the inter-sampling intervals
are lower bounded by T .

Proof. The proof is omitted due to space limitations but can be
obtained from the authors. 2

From Theorem 1, a way to design the event-triggered rule using
only the available signals is stated below.
Theorem 2. Given controller and observer gains K and L and
a positive scalar T > 0, suppose that there exist symmetric
positive definite matrices P1, P3, Qε, Qδ and a matrix P2 of
appropriate dimensions such that the matrix inequalities

Φ1 =

M

 I 0
0 C′p
0 0
0 0


∗ −Qε

< 0, (15)

Φ2 =


−
[

P1 P2
P′2 P3

] [−K′R′S
0

]
Λ1(T )′

[
P1 P2
P′2 P3

]
∗ −2S Λ2(T )′

[
P1 P2
P′2 P3

]
∗ ∗ −

[
P1 P2
P′2 P3

]
< 0, (16)

are verified with matrix M is given in (8) and

Λ1(T ) = e

([
Ap −LCp
0 Ap+LCp

]
T
)
+

∫ T

0
e

([
Ap −LCp
0 Ap+LCp

]
s
)

ds
[

BpK 0
0 0

]
Λ2(T ) =

∫ T

0
e

([
Ap −LCp
0 Ap+LCp

]
s
)

ds
[

Bp f
0

]
.

(17)
Then, the event-triggered sampling rule defined by (11) with

g
(

δ(t),
[

x̂(t)
ey(t)

])
= δ(t)′Qδδ(t)−

[
x̂(t)
ey(t)

]′
Q−1

ε

[
x̂(t)
ey(t)

]
(18)

is such that the origin of system (7) is globally asymptoti-
cally stable. Furthermore, the inter-sampling times are lower
bounded by T .

Proof. As for Theorem 1, the proof was removed from reason
of place but can be obtained from the authors. 2

Remark 3. Note that Zeno behaviors are avoided from the
definition of the event-triggered rule (11) because the inter-
sampling times are lower bounded by the positive scalar T .
Actually, T represents a dwell-time implying that there is a
minimum time T between two updates.

4. OPTIMIZATION ISSUES

Let us point out that, differently from Tallapragada and Chopra
(2012), in Theorem 2 the inter-sampling times are directly
obtained via the satisfaction of (16) without the need of ad-
ditional a posteriori calculations. Furthermore, if the condition
(15) holds then it is always possible to find a small enough T
such that conditions (16) is verified. The parameter T appears
then as a tuning parameter of the event-trigger problem. If T
is too large, the conditions may be not feasible. Since a large
T can lead to a performance degradation with respect to the



M =

He{P1(Ap +BpK)} (Ap +BpK)′P2−P1LCp +P2(Ap +LCp) P1Bp P1Bp f −K′R′S
∗ He{P3(Ap +LCp)−P′2LCp} P′2Bp P′2Bp f
∗ ∗ −Qδ −R′S
∗ ∗ ∗ −2S

 . (8)

continuous-time implementation, a classical trade-off has to be
considered when choosing T . Actually, it is important to note
that provided that matrices Ap+BpK and Ap+LCp are Hurwitz,
the existence of a small enough positive scalar T such that the
conditions of Theorem 2 are feasible is ensured.

Conditions in Theorem 2 are LMIs provided that K, L and
T are fixed, as typically considered in an emulation context.
In order to select gains K and L, classical design techniques
may be used, possibly considering some performance criteria.
In particular, the observer gain L is chosen to get Ap + LCp
Hurwitz with fast enough eigenvalues.

Hence, the selection of the parameters Qε and Qδ can be sys-
tematically performed through the following convex optimiza-
tion problem (given K, L and T > 0):

min
P1,P2,P3,Qε,Qδ,S

trace(Qδ)+ trace(Qε).

s.t. (15), (16).
(19)

The idea behind the optimization criterion in (19) is to get
Qδ and Qε as "small" as possible. With the view of the event
triggering rule (18), and condition (15), this also means that
the matrix Qδ > 0 is minimized as well as the matrix Q−1

ε > 0
is maximized. Since the control input is updated whenever the
function g in (18) is positive, this optimization procedure aims
at reducing the impact of the first positive contribution in g
(Qδ > 0) over the second negative contribution (−Qε < 0).

Let us emphasize that the dwell-time T is also a design param-
eter and its role is connected to the expected average sampling
rate of the event triggered implementation. It can then be inter-
esting to seek for maximizing the value of T through problem
(19) by iteratively increasing T and testing LMI conditions. The
implicit goal of such a convex optimization problem proposed
is to reduce as much as possible the occurrences of sampling.
This aspect is illustrated in Section 5.

5. NUMERICAL EXAMPLE

5.1 System description

Let us consider the following plant: ẋp(t) =

[
0 1
4 0

]
xp(t)+

[
0
1

]
q(u(t)),

yp(t) = [1 0]xp(t),
(20)

where q(u) is a logarithmic quantization function defined as
follows (Fu and Xie (2005)):

q(u) =


1

ρ
j
q

if
1

ρ
j
q(1+ηq)

≤ u <
1

ρ
j
q(1−ηq)

, j ∈ Z

−q(−u) if u < 0
with

ηq =
1−ρq

1+ρq
, 0 < ρq < 1

It should be noticed that the quantization error q̃(u) = q(u)−u
is restricted to the cone defined by ±ηqu (i.e., it satisfies the

T Average number of control updates
0.1 15.38
0.2 15.48
0.3 15.36
0.4 14.54
0.5 13.45
0.6 13.82
0.7 14.68

Table 1. Average number of control updates for
system (20) with the event-triggered rule (10) ob-

tained by Theorem 2 for various values of T .

relation (q̃(u)+ηqu)(q̃(u)−ηqu)< 0) (de Souza et al. (2010)).
In order to cast the system in the form (1), with a function f (u)
satisfying (2), it suffices to consider:

f (u) = q̃(u)−ηqu;

Ap =

[
0 1
4 0

]
; Bp f =

[
0
1

]
; Bp = (1+ηq)Bp f ;

Cp = [1 0] ; Dp f = 0.

Note that in this case the relation (q̃(u)+ηqu)(q̃(u)−ηqu)< 0
becomes f (u)( f (u)+ 2ηqu) < 0, i.e., (2) is verified with R =
2ηq.

5.2 Optimization results

We consider the quantization with ρq = 0.9 (which leads to R =
2ηq = 0.105263), the state feedback gain matrix K = [−6 −3],
the observer gain matrix L = [−3.5 −7]′ and the dwell-time
T = 0.2. Then, solving the optimization problem (19) with this
data, we obtain:

Qε =

 0.452633 1.10763 ·10−5 −2.19703 ·10−9

1.10763 ·10−5 0.275705 1.82799 ·10−10

−2.19703 ·10−9 1.82799 ·10−10 1.51132 ·10−5

 ,
Qδ = 0.728379.

5.3 Influence of T

Now, to show the influence of the parameter T , we solve
optimization problem (19) for some values of T in the interval
[0.1,0.7]. Table 1 shows the average number of updates of the
control signal obtained for each T chosen, considering 100
different initial conditions and t ∈ [0,10]. The variation on the
number of updates is approximately 12%. A value of T ≥ 0.8
renders optimization problem (19) unfeasible.

5.4 Some simulations

We consider several values of T to depict the evolution of
the plant and observer states, of the control input and of the
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a) T = 0.2s, Nu = 11. b) T = 0.4s, Nu = 10. c) T = 0.7, Nu = 10.

Fig. 1. Figure representing the state of the plant and the observer, the control input u, and the sampling instants issued from
Theorem 2 with T = 0.2 (left), T = 0.4 (middle) and T = 0.7 (right).

sampling instants with the event-triggering rule (10) obtained
by Theorem 2. To do this we consider the following initial
conditions for the plant and the observer:

xp(0) =
[
−5
0

]
; x̂(0) =

[
0
0

]
(21)

Fig. 1a) shows three simulations considering these values for
the trigger function and initial conditions defined as in (21). The
top plots depicts the plant and observer states. It can be noticed
that the observer states quickly converge to the plant states,
as expected. The control signal is shown in the middle plot.
Note that the control signal is effectively held constant between
two events. Moreover, the value of the control is subject to a
logarithmic quantization. The bottom plot depicts the sampling
instants, with the sizes of the bars representing the inter-event
times, i.e. the difference between the time of that event and
of the previous one. The dashed line marks the dwell-time.
One can see that the trigger strategy is effectively delaying
the sampling events, yielding inter-sampling times larger than
the dwell-time while ensuring the asymptotic stability of the
closed-loop system.

Figs. 1b) and 1c) show simulations for T = 0.4 and T = 0.7,
respectively, both considering initial conditions defined as in
(21). One can notice that, as T increases, more the inter-sample
times are equal to the value of T , i.e. the event-triggered strat-
egy cannot delay the sampling events so effectively anymore.
For T = 0.7 and the initial condition considered, all the inter-
sample times are equal to T . As mentioned before, this value
of T is close to the limit of feasibility of optimization problem
(19).

6. CONCLUSION

The paper handled an observer-based event-triggered control
strategy for linear systems subject to cone-bounded nonlinear-
ities affecting the input. The developed technique used only
available variables. Sufficient conditions based on linear matrix
inequalities (LMI) associated to convex optimization problem
have been proposed to ensure the asymptotic stability of the
closed loop in an emulation context. Moreover, the proposed
approach allowed to design the event-triggering rule with a
parameter T imposing the inter-sampling times.

These preliminary results let some open issues. In particular,
it could be interesting to study the co-design problem, that is
the simultaneous design of the control gains (K and L) and
the triggering rule (i.e. matrices Qδ and Qε). Furthermore,
it could be pertinent to study the presence of cone-bounded
nonlinearities depending on the state, imposing to change the
route used to derive the conditions.
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