Generating Human-like Reaching Movements with a Humanoid Robot : A Computational Approach $

Abstract : This paper presents a computational approach for transferring principles of human motor control to humanoid robots. A neurobiological model, stating that the energy of motoneurons is minimized and that dynamic and static efforts are processed separately, is considered. This paradigm is used to produce humanoid robots reaching movements obeying the rules of human kinematics. A nonlinear programming problem is solved to determine optimal trajectories. The optimal movements are then encoded by using a basis of motor primitives determined by principal component analysis. Finally, generalization to new movements is obtained by solving of a low-dimensional optimization problem in the operational space.
Type de document :
Article dans une revue
Journal of Computational Science, Elsevier, 2013, 4 (4), pp.269-284. 〈10.1016/j.jocs.2012.08.001〉
Liste complète des métadonnées

Littérature citée [53 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01537858
Contributeur : Michel Taïx <>
Soumis le : mardi 13 juin 2017 - 10:00:24
Dernière modification le : mercredi 21 mars 2018 - 18:57:41
Document(s) archivé(s) le : mardi 12 décembre 2017 - 11:04:34

Fichier

revised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Michel Taïx, Minh Tran, Philippe Souères, Emmanuel Guigon. Generating Human-like Reaching Movements with a Humanoid Robot : A Computational Approach $. Journal of Computational Science, Elsevier, 2013, 4 (4), pp.269-284. 〈10.1016/j.jocs.2012.08.001〉. 〈hal-01537858〉

Partager

Métriques

Consultations de la notice

154

Téléchargements de fichiers

265