Visual Marker based Multi-Sensor Fusion State Estimation

Abstract : This paper presents the description and experimental results of a versatile Visual Marker based Multi-Sensor Fusion State Estimation that allows to combine a variable optional number of sensors and positioning algorithms in a loosely-coupling fashion, incorporating visual markers to increase its performances. This technique allows an aerial robot to navigate in different environments and carrying out different missions with the same state estimation architecture, exploiting the best from every sensor. The state estimation algorithm has been successfully tested controlling a quadrotor equipped with an extra IMU and a RGB camera used only to detect visual markers. The entire framework runs on an onboard computer, including the controllers and the proposed state estimator. The whole software is made publicly available to the scientific community through an open source implementation.
Type de document :
Communication dans un congrès
2017 IFAC World Congress, Jul 2017, Toulouse, France. 6p., 2017
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.laas.fr/hal-01562557
Contributeur : Antonio Franchi <>
Soumis le : samedi 15 juillet 2017 - 16:55:06
Dernière modification le : vendredi 26 octobre 2018 - 10:27:11
Document(s) archivé(s) le : vendredi 26 janvier 2018 - 22:16:59

Fichier

2017h-SanAreTogCamFra-preprint...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01562557, version 1

Citation

Jose Luis Sanchez-Lopez, Victor Arellano-Quintana, Marco Tognon, Pascual Campoy, Antonio Franchi. Visual Marker based Multi-Sensor Fusion State Estimation. 2017 IFAC World Congress, Jul 2017, Toulouse, France. 6p., 2017. 〈hal-01562557〉

Partager

Métriques

Consultations de la notice

97

Téléchargements de fichiers

82