P. Abbeel and A. Ng, Apprenticeship learning via inverse reinforcement learning, Twenty-first international conference on Machine learning , ICML '04, 2004.
DOI : 10.1145/1015330.1015430

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Arras, S. Grzonka, M. Luber, and W. Burgard, Efficient people tracking in laser range data using a multi-hypothesis leg-tracker with adaptive occlusion probabilities, 2008 IEEE International Conference on Robotics and Automation, 2008.
DOI : 10.1109/ROBOT.2008.4543447

P. Biber and W. Straßer, The normal distributions transform: a new approach to laser scan matching, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), pp.2743-2748, 2003.
DOI : 10.1109/IROS.2003.1249285

W. Burgard, A. Cremers, D. Fox, D. Hähnel, G. Lakemeyer et al., Experiences with an interactive museum tour-guide robot, Artificial Intelligence, vol.114, issue.1-2, pp.3-55, 2000.
DOI : 10.1016/S0004-3702(99)00070-3

URL : http://doi.org/10.1016/s0004-3702(99)00070-3

I. Cox and S. Hingorani, An efficient implementation of Reid's multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.2, pp.138-150, 1996.
DOI : 10.1109/34.481539

M. Cristani, A. Pesarin, A. Vinciarelli, M. Crocco, and V. Murino, Look at Who???s Talking: Voice Activity Detection by Automated Gesture Analysis, Constr. Ambient Intell, pp.72-80, 2012.
DOI : 10.1007/978-3-642-31479-7_14

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Fiore, A. Clodic, and R. Alami, On Planning and Task Achievement Modalities for Human-Robot Collaboration, Tr on Audio, Speech, and Language Processing, pp.847-860, 2011.
DOI : 10.1109/TSMCA.2005.850592

URL : https://hal.archives-ouvertes.fr/hal-01149109

O. Jafari, D. Mitzel, and B. Leibe, Real-time RGB-D based people detection and tracking for mobile robots and head-worn cameras, 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014.
DOI : 10.1109/ICRA.2014.6907688

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Joosse, R. Poppe, M. Lohse, and V. Evers, Cultural differences in how an engagement-seeking robot should approach a group of people, Proceedings of the 5th ACM international conference on Collaboration across boundaries: culture, distance & technology, CABS '14, 2014.
DOI : 10.1145/2631488.2631499

M. Joosse, M. Lohse, and V. Evers, How a guide robot should behave at an airport insights based on observing passengers Incremental Sampling-based Algorithms for Optimal Motion Planning, Proc. of Robotics: Science and Systems (RSS), 2010.

T. Kruse, H. Khambhaita, R. Alami, and A. Kirsch, Evaluating directional cost models in navigation, Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction, HRI '14, 2014.
DOI : 10.1145/2559636.2559662

T. Kucner, J. Saarinen, M. Magnusson, and A. Lilienthal, Conditional transition maps: Learning motion patterns in dynamic environments, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1196-1201, 2013.
DOI : 10.1109/IROS.2013.6696502

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Leibe, K. Schindler, and L. Van-gool, Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.10, 2008.
DOI : 10.1109/TPAMI.2008.170

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Linder and K. Arras, Multi-Model Hypothesis Tracking of Groups of People in RGB-D Data, Proc. IEEE Int. Conf. on Information Fusion (FUSION), pp.1-7, 2014.

M. Luber and K. Arras, Multi-Hypothesis Social Grouping and Tracking for Mobile Robots, Robotics: Science and Systems IX, 2013.
DOI : 10.15607/RSS.2013.IX.001

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Magnusson, A. Lilienthal, and T. Duckett, Scan registration for autonomous mining vehicles using 3D-NDT, Journal of Field Robotics, vol.10, issue.10, pp.803-827, 2007.
DOI : 10.1002/rob.20204

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Michini and J. How, Improving the efficiency of bayesian inverse reinforcement learning Close-Range Human Detection for Head-Mounted Cameras, Proc. IEEE Intern. Conf. on Robotics and Automation (ICRA) British Machine Vision Conference, 2012.

H. Moravec and A. Elfes, High resolution maps from wide angle sonar, Proceedings. 1985 IEEE International Conference on Robotics and Automation, pp.116-121, 1985.
DOI : 10.1109/ROBOT.1985.1087316

D. Mund, R. Triebel, and D. Cremers, Active online confidence boosting for efficient object classification An algorithm for ranking all the assignments in order of increasing cost, Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), to appear Murty KG, 1968.

S. Ong, S. Png, D. Hsu, and W. Lee, POMDPs for robotic tasks with mixed observability, Proc. of Robotics: Science and Systems (RSS), 2009.

L. Palmieri and K. Arras, POSQ: A New RRT Extend Function for Efficient and Smooth Mobile Robot Motion Planning, Proc. IEEE/RSJ Int. Conf. on Intell. Robots and Systems (IROS), 2014.
DOI : 10.1109/iros.2014.6942562

G. Pandey, J. Mcbride, and R. Eustice, Ford Campus vision and lidar data set, The International Journal of Robotics Research, vol.25, issue.13, pp.1543-1552, 2011.
DOI : 10.1109/34.888718

F. Pomerleau, P. Krüsi, F. Colas, P. Furgale, and R. Siegwart, Long-term 3D map maintenance in dynamic environments, 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014.
DOI : 10.1109/ICRA.2014.6907397

URL : https://hal.archives-ouvertes.fr/hal-01143106

J. Saarinen, H. Andreasson, T. Stoyanov, and A. Lilienthal, 3D normal distributions transform occupancy maps: An efficient representation for mapping in dynamic environments, The International Journal of Robotics Research, vol.70, issue.1, pp.1627-1644, 2013.
DOI : 10.1007/978-3-540-75404-6_3

R. Siegwart, K. Arras, S. Bouabdallah, D. Burnier, G. Froidevaux et al., Robox at Expo.02: A large-scale installation of personal robots, Robotics and Autonomous Systems, vol.42, issue.3-4, pp.3-4203, 2003.
DOI : 10.1016/S0921-8890(02)00376-7

T. Stoyanov, J. Saarinen, H. Andreasson, and A. Lilienthal, Normal Distributions Transform Occupancy Map fusion: Simultaneous mapping and tracking in large scale dynamic environments, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.4702-4708, 2013.
DOI : 10.1109/IROS.2013.6697033

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Sudowe and B. Leibe, Efficient Use of Geometric Constraints for Sliding-Window Object Detection in Video, International Conference on Computer Vision Systems (ICVS), 2011.
DOI : 10.1007/11736790_8

D. Tosato, M. Spera, M. Cristani, M. Vittorio, H. Grimmett et al., Characterizing humans on riemannian manifolds Driven learning for driving: How introspection improves semantic mapping, Proc of Intern. Symposium on Robotics Research (ISRR), 2013.

R. Triebel, J. Stühmer, M. Souiai, and D. Cremers, Active Online Learning for Interactive Segmentation Using Sparse Gaussian Processes, German Conference on Pattern Recognition (GCPR), 2014.
DOI : 10.1007/978-3-319-11752-2_53

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Vasquez, B. Okal, K. Arras, . Iros, . Chicago et al., Inverse reinforcement learning algorithms and features for robot navigation in crowds: an experimental comparison Do they like me? Using video cues to predict desires during speeddates, Intern. Conf. on Computer Vision, Workshops, pp.838-845, 2011.