Skip to Main content Skip to Navigation
Conference papers

Viewing Robot Navigation in Human Environment as a Cooperative Activity

Harmish Khambhaita 1 Rachid Alami 1 
1 LAAS-RIS - Équipe Robotique et InteractionS
LAAS - Laboratoire d'analyse et d'architecture des systèmes
Abstract : We claim that navigation in human environments can be viewed as cooperative activity especially in constrained situations. Humans concurrently aid and comply with each other while moving in a shared space. Cooperation helps pedestrians to efficiently reach their own goals and respect conventions such as the personal space of others. To meet human comparable efficiency, a robot needs to predict the human trajectories and plan its own trajectory correspondingly in the same shared space. In this work, we present a navigation planner that is able to plan such cooperative trajectories, simultaneously enforcing the robot's kinematic constraints and avoiding other non-human dynamic obstacles. Using robust social constraints of projected time to a possible future collision, compatibility of human-robot motion direction, and proxemics, our planner is able to replicate human-like navigation behavior not only in open spaces but also in confined areas. Besides adapting the robot trajectory, the planner is also able to proactively propose co-navigation solutions by jointly computing human and robot trajectories within the same optimization framework. We demonstrate richness and performance of the cooperative planner with simulated and real world experiments on multiple interactive navigation scenarios.
Document type :
Conference papers
Complete list of metadata

Cited literature [39 references]  Display  Hide  Download
Contributor : Harmish Khambhaita Connect in order to contact the contributor
Submitted on : Monday, August 7, 2017 - 4:56:33 PM
Last modification on : Monday, July 4, 2022 - 8:57:21 AM


Files produced by the author(s)


  • HAL Id : hal-01572555, version 1
  • ARXIV : 1708.01267


Harmish Khambhaita, Rachid Alami. Viewing Robot Navigation in Human Environment as a Cooperative Activity. International Symposium on Robotics Research (ISSR 2017), Dec 2017, Puerto Varas, Chile. 18p. ⟨hal-01572555⟩



Record views


Files downloads