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Abstract: This paper deals with the control of the induction phase of anesthesia. The objective
during this first phase is to bring the patient from its awake state to a final state corresponding
to some given depth of anesthesia, measured by the BIS (Bispectral index), within a minimum
time. This optimal time control strategy is addressed by means of the maximum principle of
Pontryagin. Furthermore, since the anesthesia model presents multiple time scale dynamics that
can be split in two groups : fast and slow and since the BIS is a direct function of the fast ones,
we only consider the optimal control of fast states. The final state of the slow dynamics is
let free. The synthesis approach of the optimal control is detailed then tested in the case of a
nominal patient.
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1. INTRODUCTION

General anesthesia consists in the control of the perfusion
of hypnotic and analgesic drugs based on clinical indicators
such as heart rate, blood pressure and BIS (Bispectral
index, derived from the spectral analysis of the electroen-
cephalogram signal (EEG)). Automatic control techniques
are used to increase patient comfort during surgery and
recovery (Struys et al. (2001)), reduce dosing differences
between doctors and decrease the workload of the anesthe-
siologists in order to minimize human error risk (Mackey
(2012)).

A general anesthesia procedure may be divided into three
temporal phases: induction, maintenance and reanima-
tion. Indeed, in a traditional anesthesia approach, the
anaesthesiologist starts by an initial injection of a big
amount of drugs (bolus) for a short time (induction phase),
followed by a phase of manual control corresponding to
the maintenance phase. The stop of the administration of
anesthetic drugs marks the transition from maintenance to
the reanimation phase which ends with the full resumption
of consciousness and physiological functions.

Most of the works tackling the automatic control of
anesthesia suggest a single control law for the two phases
(induction and maintenance) using different techniques
such as PID-based feedback control (Absalom and Kenny
(2003), Soltész (2013)), adaptive control (Haddad et al.
(2003)) or other techniques as in Nascu et al. (2015).
The disadvantage of such approaches can be seen in the
overshoot of the BIS and in the abrupt variation of the flow
rate that should be avoided for the actuator. On the other
hand, there exists only few works that treat each phase
apart as in Fiacchini et al. (2016) or propose a control

of only the maintenance phase (Lemos et al. (2014)) or
the induction phase (Cummings et al. (1984)). Moreover,
studies generally focus on the control of one drug (hypnotic
or analgesic) and we follow the same route considering only
the hypnotic control of the patient.

In a precedent paper (Zabi et al. (2015)), we developed
a new strategy for the robust control of anesthesia for
the maintenance phase taking into account the saturation
of the actuator, the multiple time scale dynamics in the
anesthesia model and the variability of the patient. In the
continuation of our work, this paper address the problem
of control of the induction phase using the optimal control.
This optimal control is chosen because it allows to better
imitate the clinical practice (bolus injection to quickly
converge towards the target). As in the maintenance phase,
the multiple time scale in the dynamics is taken into
account by considering that the target is only depending
on the fast dynamics including the BIS. A simulation study
performed on a nominal patient shows the pertinence of
our approach.

2. MODELLING ASPECTS AND PROBLEM
FORMULATION

2.1 The traditional patient model

The compartment model used to describe the circulation
of drugs in a patient’s body, also known as Pharmacoki-
netic/Pharmacodynamic (PK/PD) model, is based on a
classical compartment model as shown in Figure 1 (Deren-
dorf and Meibohm (1999)).

The effect of the drug on the patient is expressed through-
out the effect site, which represents the action of drugs on
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Fig. 1. The compartment model

the brain and is related to the concentration in the central
compartment through a first order dynamic (Beck (2015)).
So, the compartmental model can be expressed as follows:

ẋan(t) = Axan(t) +Buan(t) (1)

with

A =

−(k10 + k12 + k13) k21 k31 0
k12 −k21 0 0
k13 0 −k31 0

ke0/v1 0 0 −ke0


B = [ 1 0 0 0 ]

′

where xan = [xan1 xan2 xan3 xan4]′, xan1(t), xan2(t),
xan3(t) are the masses in grams of the propofol in the
different compartments and uan is the infusion rate in
g/min of the anesthetic.

The parameters kij ≥ 0, ∀i 6= j, i, j = 1, 2, 3, are the
transfer rates of the drug between compartments. The
parameter k10 represents the rate of elimination from the
central compartment. These parameters are functions of
the patient characteristics (weight, age, height, ...) and
the drug. There exists several empirical models, which
give the relation between those parameters and patient’s
characteristics for a given drug (Coppens et al. (2011)). In
particular one can cite the model of Schnider et al. (1998)
(Table 1) that we use here to define a typical patient and
predict the PK/PD model parameters when propofol is
used as the hypnotic drug. The lean body mass (LBM)
is calculated using the James formula (James (1976)) as
follows:

Male: LBM = 1.1×weight-128×(weight/height)2

Female: LBM = 1.07×weight-148×(weight/height)2

The depth of anesthesia indicator widely used by clinicians
is the BIS (the bispectral index). It is a signal derived
from the EEG analysis, which quantifies the level of
consciousness of a patient from 0 (no cerebral activity)
to 100 (fully awake patient). It is commonly accepted
that the BIS evolution is directly related to the effect site
concentration of xan4, and can be described empirically by
a decreasing sigmoid function (Bailey and Haddad (2005)):

BIS(xan4(t)) = BIS0(1− xγan4(t)

xγan4(t) + ECγ50
), (2)

BIS0 is the BIS value of an awake patient typically set to
100. EC50 corresponds to drug concentration associated
with 50% of the maximum effect and γ is a parameter
modeling the degree of non-linearity. Typical values for
these parameters are EC50 = 3.4µg/ml and γ = 3
(Haddad et al. (2010)).

2.2 Equilibrium point

We consider generally that during a surgery, the BIS
must be brought then maintained close to 50, or at least
in an interval between 40 and 60. Given the sigmoid
describing the relation between the BIS and the effect
site concentration, it follows that for the BIS equal to
50% of BIS0 the effect site concentration must be equal
to EC50. The values of the other variables can then be
deduced from the unique equilibrium point of system (1)
(see Zabi et al. (2015)).

xe1 = EC50v1, xe2 =
k12
k21

xe1, xe3 =
a13
a31

xe1, xe4 = EC50

and the value of the input for this equilibrium is given by

ue = k10xe1

2.3 Error model

Considering the change of variables x = xan − xe and
u = uan−ue with xe = [xe1 xe2 xe3 xe4]′, the error model
can be described as:

ẋ = Ax+Bu (3)

with x = [x1 x2 x3 x4]′ and A defined in equation (1).
The equilibrium point is, therefore, the origin of this error
model. The amplitude of the control is constrained,

Umin ≤ u(t) ≤ Umax (4)

where Umin is equal to −ue and Umax+ue is the maximum
flow rate of the drug that can be administered in practice.

2.4 Problem formulation

Inspired by the clinical practice where, in order to quickly
sedate the patient and bring his state near to the equilib-
rium xe, the anaesthesiologist begins by a bolus injection,
we propose the use of an optimal control strategy for the
induction phase. This control strategy aims at bringing
the patient state from its awake state xan = 0 to the
equilibrium target state xan = xe (or equivalently bringing
the error model state from an initial state x = −xe to the
origin x = 0) in a minimum time.

Regardless of patient under consideration, the dynamics
of metabolism and circulation of propofol in the central
compartment and at the site effect is ten times faster than
in muscles, and even a hundred times faster than in fat.
The control of the fast dynamics is the most important
because the regulation of the BIS is a direct function of
the concentration at the effect site and thus of the fast
dynamics on which the administered drug directly acts.
Thus, in the following, we choose to separate the dynamics
by denoting xf = [x1 x4] the fast ones and xs = [x2 x3]
the slow ones.

Therefore, since the BIS is directly function of fast states,
the fact of bringing the fast states to the origin allows
a quick transfer of the BIS toward the target 50. Never-
theless, bringing the slow states to their origin will take a
considerable time and has no direct effect on the BIS. Thus
the strategy adopted, in this paper, consists at designing
the optimal control law that brings the fast states to their
origin in a minimum time regardless of the slow ones. Note



Table 1. Schnider Model

Parameter Estimation male, 53yr, 77kg, 177cm

k10(min−1) 0.443 + 0.0107×(weight-77)-0.0159×(LBM-59)+0.0062×(height-177) 0.384
k21(min−1) 0.302 - 0.0056×(age-53) 0.375
k31(min−1) 0.196 0.196
k12(min−1) [1.29 - 0.024×(age-53)]/[18.9-0.391×(age-53)] 0.067
k31(min−1) 0.0035 0.0035
ke0(min−1) 0.456 0.456
v1(L) 0.288× weight 22.176

that, afterwards, during the maintenance phase the slow
ones may be considered as disturbances and the closed
loop control objective will be to maintain the fast states
near to the origin despite of the disturbances of the slow
ones. The scheme in Figure 2 describes the approach of
the induction phase followed by a maintenance phase.

x1

x4

xe1

xe4

Awake
patient

Patient
B I S 50

Induction Maintenance

Optimal time control

Closed-loop
control

Fig. 2. Scheme describing the approach with an ”induction
phase” followed by the ”maintenance phase”

The problem we intend to solve can be addressed as
follows.

Problem 1. Let x(0) = −xe be the initial state of system
(3), find the u∗(t) satisfying the constraint (4) that allows
bringing the fast states to the origin in a minimum time.

Formally, this minimum time control problem can then be
written as follows

min
u(t)

J(x, u) =

∫ Tf

0

dt = Tf

s. t ẋ(t) = Ax+Bu, x(0) = −xe, xf (Tf ) = 0

Umin ≤ u(t) ≤ Umax

(5)

3. TIME-OPTIMAL CONTROL SYNTHESIS

The minimum time control problem has been studied
extensively in the literature (see Liberzon (2012), Athans
and Falb (1966)). In the case of linear systems, the
existence and uniqueness of the solution is known to
depend on the controllability of the system. Moreover, as
we shall see later, this command consists of a countable
number of commutations between Umax and Umin. Since
the eigenvalues of the model are real, the number of switch

is at most equal to n−1, where n is the order of the system,
thus, at most three commutations in our case.

3.1 The Maximum principle

To solve the problem (5), we use the maximum principle of
Pontryagin in the version given by Naidu (2002) recalled
below, after the definition of the Hamiltonian:

Definition 1. The HamiltonianH of problem (5) is written

H(t, x, u, λ) = 1 + λ′(Ax+Bu) (6)

with λ(t) a costate vector.

Theorem 1. (Maximum principle of Pontryagin). Let u∗(t)
be a control law that transfers the system (3) from the ini-
tial state x(0) = −xe to a final state where the fast states
xf (Tf ) = 0 and let x∗(t) be the trajectory corresponding
to u∗(t). In order that u∗(t) be the minimum time control
solution to problem (5), it is necessary that there exists a
corresponding costate vector λ∗(t) such that:

a. λ∗(t) and x∗(t) are solutions of the canonical equa-
tions:

ẋ∗(t) =
∂H

∂λ
(t, x∗, u∗, λ∗) (7a)

λ̇∗(t) = −∂H
∂x

(t, x∗, u∗, λ∗) (7b)

with the boundary conditions

x∗(0) = −xe x∗f (Tf ) = 0. (8)

b. u∗(t) is a global minimum for the Hamiltonian in
[Umin, Umax]

min
u(t)∈[Umin, Umax]

H(t, x∗, u, λ∗) = H(t, x∗, u∗, λ∗)

that is,

H(t, x∗, u, λ∗) ≥ H(t, x∗, u∗, λ∗) ∀u ∈ [Umin, Umax]
(9)

c. the Hamiltonian H(t, x∗, u∗, λ∗) is equal to zero for
all t ∈ [0, Tf ], i.e.,

H(t, x∗, u∗, λ∗) = 0 ∀t ∈ [0, Tf ] (10)

The conditions of Theorem 1 do not contain explicit in-
formations regarding initial and final states of the costate
vector, λ∗(0) and λ∗(Tf ). Nevertheless, from the equation
(10), we can verify that

λ∗(t) 6= 0 ∀t ∈ [0, Tf ] (11)

3.2 Characterization of the optimal solution

Using the maximum principle of Pontryagin, we can de-
velop the solution of the minimum time problem (5) as



follows: first, the optimal trajectories of x∗(t) and λ∗(t)
satisfy the canonical equations (7a) and (7b) then

ẋ∗(t) = Ax∗(t) +Bu∗(t) (12a)

λ̇∗(t) = −A′λ∗(t) (12b)

with x∗(0) = −xe , x∗f (Tf ) = 0 and λ∗(0) 6= 0.

Then, from the optimality condition (9), the control law
u∗(t) is a global minimum of the Hamiltonian if

1 + λ∗
′
(t)Ax∗(t) + λ∗

′
(t)Bu∗(t) ≤ 1

+λ∗
′
(t)Ax∗(t) + λ∗

′
(t)Bu(t) ∀u ∈ [Umin, Umax]

Or, equivalently, if

λ∗
′
(t)Bu∗(t) ≤ λ∗′(t)Bu(t) ∀u ∈ [Umin, Umax]

If λ∗
′
(t)B > 0, u∗(t) is as small as possible, namely

min
u(t)∈[Umin, Umax]

λ∗
′
(t)Bu(t) = λ∗

′
(t)BUmin

If λ∗
′
(t)B < 0, u∗(t) is the greatest possible, namely

min
u(t)∈[Umin, Umax]

λ∗
′
(t)Bu(t) = λ∗

′
(t)BUmax

The optimal control u∗(t) is thus described by the follow-
ing function:

u∗(t) =


Umin if λ∗

′
(t)B > 0

Umax if λ∗
′
(t)B < 0

undetermined if λ∗
′
(t)B = 0

(13)

For the existence, uniqueness and normality (no inde-
terminability) of this control, one can use the following
theorem:

Theorem 2. (Naidu (2002)) If system (3) is fully control-
lable then there is a unique minimum time control which
is solution of problem (5). This command is also normal,
i.e.,

@ T2 > T1, [T1, T2] ⊂ [0, Tf ] such that

λ∗
′
(t)B = 0 ∀t ∈ [T1, T2]

By denoting λ∗(t) = [λ∗1(t) λ∗2(t) λ∗3(t) λ∗4(t) ]′, we can also
note that because of the particular structure of B, (13)
can be written as

u∗(t) =

{
Umin if λ∗1(t) > 0

Umax if λ∗1(t) < 0
(14)

Finally, note that the initial values of the state variables
are given but the initial values of costate vector λ∗ are
unknown. To simplify the choice of initial values of the
components of the costate vector, we use the fact that
the Hamiltonian should be equal to zero at any point
of the optimal trajectory (condition (10) of Pontryagin’s
theorem). If we also note that for an initial condition
x(0) = −xe < 0 and a final condition xf (Tf ) = 0, the
initial value of the control (the flow rate injection of drugs
uan) must be positive, it follows that u(t = 0+) = Umax.
Then at t = 0+, we have λ∗1(0+) < 0 and λ∗(0+) must
verify:

H

∣∣∣∣
t=0+

= 1 + λ∗(0+)(−Axe +BUmax) = 0 (15)

Given that Axe + Bue = 0 and Umin = −ue, it follows
that:

λ∗1(0) =
−1

Umax − Umin
(16)

3.3 Computation algorithm

The initial value of the other components of the costate
vector is unknown. An iterative approach likely to solve
problem (5), summarized by the diagram in Figure 3, is
expressed as follows:

Step 1: Compute λ∗1(0) as in (16) and select a value for
the initial condition λ∗2(0), λ∗3(0), λ∗4(0).

Step 2: Compute λ∗(t) = e−A
′tλ∗(0) on a sufficiently

long interval [0, T ].
Step 3: Using the costate λ∗(t), evaluate the control u∗(t)

defined in equation (14).
Step 4: Compute the associated trajectory x∗(t) for the

control evaluated at the previous step on the interval
[0 T ].

Step 5: Monitor the trajectory x∗(t) and find
a) If there exist t = Tf ∈ [0 T ] such that

‖xf (Tf )‖
‖xfe‖

≤ ε (17)

with ε : a chosen precision threshold and xfe =
[−xe1 − xe4], then the solution of (5) is given
by Tf and u∗ is the minimum time control of the
bang-bang form.

b) If not, change the initial value of λ∗(0) and repeat
the previous steps until the satisfaction of the
stop criterion (17). The change of the initial value
can be performed according to a Newton gradient
method, for example.

Assume λ∗
2,3,4(0)

Compute
λ∗(t) = exp(−A′t)λ∗(0)

Compute
ẋ∗(t) = Ax∗(t) + Bu∗(t)

Compute

||xf (Tf )||
||xfe|| ≤ ε ?

No

Yes

Change λ∗
2,3,4(0)

Optimal solution

x∗(t), u∗(t), λ∗(t)

Data
A,B, x(0), Umin, Umax, ε

∃ Tf

u∗(t) (15)

Compute λ∗
1(0) (17)

Fig. 3. Flowchart for the computation of the optimal
control solution to Problem (5)

4. NUMERICAL EXAMPLE

Let us consider as a nominal patient a man of 53 years,
177 cm and 77 kg. The equilibrium point and the flow rate



corresponding to a BIS of 50 are :

xe1 = 14.51mg, xe2 = 64.26mg, xe3 = 809.2mg,

xe4 = 3.4mg/l, ue = 6.08mg/min

System (3) centered on this equilibrium point is defined
with

A =

−0.9170 0.0683 0.0035 0
0.3021 −0.0683 0 0
0.1958 0 −0.0035 0
0.1068 0 0 −0.4560

 , B =

 1
0
0
0


and u ∈ [Umin, Umax], Umin = −ue, Umax =
100mg/min.

We are seeking for the minimum time control that can
bring the patient from its initial awake state x = −xe
to a final state where the fast states xf (Tf ) = 0. The
final condition of the slow states is free. λ∗1(0) can be
computed using (16) which gives λ∗1(0) = −0.0094. The
other components of the costate vector are computed
by the iterative procedure presented in Figure 3. The
algorithm is programmed under Matalb with the use
of the fsolve function which uses the Newton gradient
method to change the value of λ∗(0). It is important to
note that the convergence to a solution is very sensitive to
the choice of the initial values of λ2(0), λ3(0) and λ4(0).
By setting the precision threshold ε at 10−4, the initial
value of the costate vector corresponding to the optimal
solution is λ∗(0) = [−0.0094 −0.0019 −0.0450 −0.0400]′

and the minimum time is estimated at Tf = 1.85 min

when the stop criterion reached
‖xf (Tf )‖
‖xfe‖ = 1.68 × 10−5.

The minimum time control and the variation of λ∗
′
(t)B

are plotted in Figure 4 while the corresponding trajectory
of the fast states is given in Figure 5.
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Fig. 4. The minimum time control, u∗(t) in mg/min,
solution to Problem (5) and the evolution of λ∗(t)B.

For this nominal patient, the optimal control allowing the
fast states of system (3) to reach the origin from an initial
state x = −xe i.e., allowing the fast states of system (1)
to reach their equilibrium point xan = xe starting from an
initial state xan = 0, consists at injecting the maximum
flow rate of propofol for 0.55 minutes (about 35 seconds)
followed by a zero flow for 1.3 minutes. Figure 6 shows the
corresponding evolution of the BIS.
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Fig. 5. The optimal trajectory of fast states to reach
xf (Tf ) = 0 corresponding to the minimum time
control u∗(t).
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Fig. 6. The BIS evolution in response to the minimum
time control u∗(t) which consists at keeping u(t) at
its maximum Umax = 100mg/min for about 0.55
minutes then switch to its minimum Umin = −ue for
1.3 minutes.

The slow states xan2, xan3 are guaranteed to stay in the
positive orthant as long as uan remains positive but there
is no condition on their final value. Figure 7 presents the
evolution of the slow states (x2, x3) which supports the
approach of splitting fast and slow states. If the slow ones
were also considered in the terminal constraint of the time
optimal control, it would require a huge time to reach this
optimum without any influence on the BIS.

Once the equilibrium target is reached, or, at least, a
neighbourhood, we can switch to a closed loop control in
order to maintain the system close to this equilibrium.
The slow states can be considered as disturbances. The
stability of the full strategy will be guaranteed as soon as
the switch occurs once the trajectory of the system has
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entered an invariant domain around the equilibrium (Zabi
et al. (2015)).

5. CONCLUSION

In this paper, we presented an optimal control strategy
to emulate the strategy implemented by the anaesthesiol-
ogists with an initial injection of a big amount of drugs
(bolus) for a short time, followed by a phase without
adding drug (uan = 0) before switching to a manually
control corresponding to the maintenance phase. This type
of result is also obtained using invariant sets theory in
Fiacchini et al. (2016).

The minimum time control computed aims at transfer-
ring the patient from its awake state to the final state
corresponding to a BIS of 50. Since the patient model
is composed of slow and fast dynamics and the BIS is
function of the fast ones, we considered the final state of
the optimal control as only that one of the fast dynamics.
The optimal control u∗(t) is patient dependent and could
be transformed as a standard protocol exactly as it is done
manually by the anesthesiologist to select the bolus and
the duration of injection for each patient depending on its
characteristics.
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