Strain-driven diffusion process during silicon oxidation investigated by coupling density functional theory and activation relaxation technique

Abstract : The reaction of oxygen molecules on an oxidized silicon model-substrate is investigated using an efficient potential energy hypersurface exploration that provides a rich picture of the associated energy landscape, energy barriers, and insertion mechanisms. Oxygen molecules are brought in, one by one, onto an oxidized silicon substrate, and accurate pathways for sublayer oxidation are identified through the coupling of density functional theory to the activation relaxation technique nouveau, an open-ended unbiased reaction pathway searching method, allowing full exploration of potential energy surface. We show that strain energy increases with O coverage, driving the kinetics of diffusion at the Si/SiO 2 interface in the interfacial layer and deeper into the bulk: at low coverage, interface reconstruction dominates while at high coverage, oxygen diffusion at the interface or even deeper into the bottom layers is favored. A changing trend in energetics is observed that favors atomic diffusions to occur at high coverage while they appear to be unlikely at low coverage. Upon increasing coverage, strain is accumulated at the interface, allowing the oxygen atom to diffuse as the strain becomes large enough. The observed atomic diffusion at the interface releases the accumulated strain, which is consistent with a layer-by-layer oxidation growth.
Type de document :
Article dans une revue
Journal of Chemical Physics, American Institute of Physics, 2017, 147 (5), pp.054701. 〈10.1063/1.4996206〉
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.laas.fr/hal-01574755
Contributeur : Anne Hemeryck <>
Soumis le : lundi 21 août 2017 - 08:46:38
Dernière modification le : mardi 11 septembre 2018 - 15:19:15

Fichier

Salles-JChemPhys-RevVersion-Au...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Nicolas Salles, Nicolas Richard, Normand Mousseau, Anne Hémeryck. Strain-driven diffusion process during silicon oxidation investigated by coupling density functional theory and activation relaxation technique . Journal of Chemical Physics, American Institute of Physics, 2017, 147 (5), pp.054701. 〈10.1063/1.4996206〉. 〈hal-01574755〉

Partager

Métriques

Consultations de la notice

158

Téléchargements de fichiers

58