
HAL Id: hal-01580264
https://laas.hal.science/hal-01580264

Submitted on 8 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature Model as a Design-Pattern-based Service
Contract for the Service Provider in the Service

Oriented Architecture
Akram Kamoun, Mohamed Hadj Hadj Kacem, Ahmed Hadj Hadj Kacem,

Khalil Drira

To cite this version:
Akram Kamoun, Mohamed Hadj Hadj Kacem, Ahmed Hadj Hadj Kacem, Khalil Drira. Feature
Model as a Design-Pattern-based Service Contract for the Service Provider in the Service Oriented
Architecture. International Conference on Enterprise Information Systems (ICEIS 2017), Apr 2017,
Porto, Portugal. pp.239-264, �10.1007/978-3-319-93375-7_12�. �hal-01580264�

https://laas.hal.science/hal-01580264
https://hal.archives-ouvertes.fr


Feature Model as a Design-Pattern-based Service
Contract for the Service Provider in the Service

Oriented Architecture
Akram Kamoun1, Mohamed Hadj Kacem1, Ahmed Hadj Kacem1,

and Khalil Drira2

1Laboratory of Development and Control of Distributed Applications (ReDCAD),
National Engineering School of Sfax, Tunisia

2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
akram.kamoun@redcad.tn, mohamed.hadjkacem@redcad.org,

ahmed.hadjkacem@fsegs.rnu.tn, and khalil@laas.fr

Abstract
In Service Oriented Architecture (SOA), many feature modeling ap-

proaches of Service Provider (SP) have been proposed, notably: the two
widely used service contracts WSDL and WADL. By studying these ap-
proaches, we found that they suffer from several problems, notably: they
only work for specific communication technologies (e.g., SOAP or REST)
and they do not explicitly model SOA Design Pattern (DPs) and their
compounds. One major benefit of using a DP or a compound DP is to
develop SPs with proven design solutions. In this paper, in order to over-
come these problems, we propose an approach that integrates Software
Product Line (SPL) techniques in the development of SPs. Essentially,
we propose a Feature Model (FM), which is the defacto standard for vari-
ability modeling in SPL, for the feature modeling of SP. This FM, named
F MSP , is designed as a DP-based service contract for SP that models
different features including 16 SOA DPs and their compounds that are
related to the service messaging category. Its objective to enable devel-
opers to generate fully functional, valid, DP-based and highly customized
SPs for different communication technologies. Through a practical case
study and a developed tool, we validate our F MSP and demonstrate that
it reduces the development costs (effort and time) of SPs.

Index terms— Service oriented architecture, Service provider, Service con-
tract, Design pattern, Feature model, Software product line

1 Introduction
Service Oriented Architecture (SOA) is an architectural model that represents
a distributed computing platform by considering services as the essential means
through which a solution logic is implemented [1]. A service consists of a set of
capabilities (i.e., operations) that are implemented in a Service Provider (SP)
and can be invoked by different Service Consumers (SCs). One of the main

1



objectives of SOA is to promote loose coupling, reusability and interoperability
of SCs and SPs. The latter can be customized to implement different fea-
tures. In this paper, we focus on modeling the SP features notably the ones of
services, capabilities, SOA Design Patterns (DPs) [2], and the three communi-
cation technologies Simple Object Access Protocol (SOAP), REpresentational
State Transfer (REST) and Middleware Oriented Messaging (MOM) [3], [4].

DPs are appropriate and proven design solutions that have been introduced
by veteran problem solvers for specific problems in certain contexts. In the prac-
tice, it is frequent to implement a compound DP that represents a composition
of a set of DPs that are applied together in order to solve a complex problem
[2].

In the literature, many SP feature modeling approaches have been proposed
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16] notably the two widely
used service contracts: Web Services Description Language (WSDL) [5] and
Web Application Description Language (WADL) [6]. These service contracts
are represented with XML documents, with different notations, through which
the features of the communication technologies SOAP and REST are modeled,
respectively. It is important to note that the service contract represents a core
part and one of the fundamental design principles in SOA [1]. Erl [1] said: “the
service contract represents a core part of a service’s architecture and is a focal
point during the service design process to the extent that a principle is dedicated
to its customization”. By studying these SP feature modeling approaches, we
identify that they suffer from several problems, as follows:

P.1 explicitly modeling the SOA DPs and compound DPs is not considered.
This makes difficult the development of DP-based and complex SPs with
proven design solutions. It should be noted that developing valid SOA DPs
and compound DPs is not a straightforward and easy task and requires a
solid core of expert knowledge [17]. Schmidt et al. [17] said: “combining
several patterns into a heterogeneous structure is complicated”;

P.2 only a limited set of features has been modeled. This prevents the devel-
opment of complex SPs;

P.3 there is a lack of solutions to generate fully functional SPs. The main
reason is that, as reported by Parra and Joya [8] and Fantinato et al. [9],
the features (e.g., input and output data) of capabilities and services are
not modeled;

P.4 there is a lack of solutions that model SP features independently of com-
munication technologies. This is important to be able to generate SPs that
support different communication technologies. For example, the features
modeled in the service contracts WSDL and WADL are dependent on the
SOAP and REST communication technologies, respectively;

P.5 some communication technologies do not offer service contracts, notably
the MOM. In this case, it would be not possible to benefit from the ad-
vantages of using service contracts;

P.6 developing many separated service contracts can be needed to develop a
SP. For example, if a given service in the SP supports the SOAP and REST
communication technologies, then this service should be implemented and

2



accompanied with the two different service contracts WSDL and WADL,
respectively. This can decrease the governance of the SP and can make
difficult for SP developers to implement SP features. Also, it can make
difficult for SC developers to discover the features that are offered by the
SP (e.g., to discover the supported communication technologies of SP);

P.7 each SP feature modeling approach (e.g., WSDL and WADL) uses its own
notation even to model the same features (e.g., input and output data
features). This can lead to misinterpretation and difficulty to understand
SP features, and reduces the efficiency of the reusability design principle
[1] in the SP feature modeling.

In order to overcome these problems, we introduce in this paper, an approach
that uses Software Product Line (SPL) [18] techniques for the feature modeling
and the mass-customization of SPs in SOA. Essentially, we propose a Feature
Model (FM) [19], named FMSP , that is designed as a DP-based service con-
tract for the SP feature modeling. This FM expresses 72 features including 16
SOA DPs that are related to the service messaging category (see chapter “Ser-
vice Messaging Patterns” in [2]). This category provides various techniques for
processing and coordinating data exchanges between services. One of the main
challenges tackled in this work is to design this FMSP in a way that it ensures
deriving valid compounds of these 16 SOA DPs and valid SPs accordingly. The
objective of the proposed FMSP is to enable developers to generate fully func-
tional, valid, DP-based and highly customized SPs for different communication
technologies (SOAP, REST and MOM).

The contribution proposed in this paper extends our earlier work [20], which
has been published as a conference paper in ICEIS’2017. Principally, we extend
the earlier proposed FMSP with other 26 features, we introduce some revision
and enhancements to it to be able to derive more complex SPs, and we discuss it
in more details. The objectives of these newly added features are twofolds. First,
they allow to generate more complex SPs. In particular, we add modeling the
Messaging metadata DP [2] which is an essential DP for the other modeled DPs.
Second, they take into consideration all the required information that must be
discovered by SC developers in order to develop SCs which can communicate
correctly with all the possible SPs that can be derived from FMSP .

The rest of this paper is structured as follows. In Sect. 2, we provide a brief
overview of the FM. In Sect. 3, we introduce our approach including our FMSP .
In Sect. 4, we evaluate our approach through a practical case study. In Sect. 5,
we discuss some related works. This paper is concluded in Sect. 6.

2 A brief overview of the feature model
One increasing trend in application development is the need to develop multiple
and customized applications instead of just a single individual application. The
main reason is that, because of the cost and time constraints, it is not possible for
developers to realize a new application from scratch for each new project, and so
software reuse must be increased. The Software Product Line (SPL) [18] offers
software reusing solutions to these not quite new, but increasingly challenging,
problems to enable the mass-customization of applications. It relies on the
variability modeling of the application artifacts (e.g., source code and design)

3



Mobile phone

Calls Camera

ColorBasic High resolution GPS

Screen Network

WIFI

[0,2]

Notational elements:

Feature Feature attribute Optional Mandatory
[min, max]

Cardinality-based
feature

Requires Excludes
XOR OR

Resolution

Figure 1: Example of a feature model for mobile phone

to be able to generate customized applications. The variability consists in the
ability of an artifact to be customized or configured in a particular context.
The Feature Model (FM) [19] is the defacto standard for variability modeling
in SPL. Its objective is to model the legal combination of the SPL features to
generate customized applications.

In Fig. 1, we present an example of a FM for mobile phone. The structure
of the FM is a rooted tree of features that can be defined through different
notational elements. Many FM metamodels [21], [19] have been proposed in the
literature that offer different notational elements. We rely on the FMmetamodel
of Czarnecki et al. [19] because its notational elements fit well and are necessary
in our work. In Fig. 3, we present these notational elements that will be briefly
presented in the following. The feature can be either mandatory or optional.
The feature attribute allows to add an attribute value to specify extra-functional
information for features. The cardinality-based feature [min,max] defines the
lower and upper bounds of instances of a given feature. In our example, a
mobile phone can have from 0 to 2 instances of the feature Camera. Each
instance has the mandatory feature attribute Resolution that must be valued
by the developer in order to set the camera resolution. The feature constraints
“requires” and “excludes” permit to define inclusion and exclusion constraints
between features. The feature group XOR [1,1] allows selecting exactly one out
of its child features which can be called as alternative exclusive features. The
feature group OR [1,n] allows selecting one or many of its child features which
can be called as alternative inclusive features.

In order to derive and generate a customized application from a FM, a devel-
oper needs to derive a model that is a specialization of this FM. Specialization is
a refinement process that allows the elimination of some variability information

4



Service
provider
developerService

provider

3

SPLSP

SPL
developer

Specialization of
(refinment of)

DP-based FMSP

(Fig. 3)

FMSPspec

2

1

Figure 2: Approach overview

from a FM. Czarnecki et al. [19] introduce several specialization ways, such
as: refining a cardinality-based feature [min,max], selecting a required feature,
deselecting an unwanted feature and assigning a feature attribute value. If all
the variability of the derived model has been resolved by the developer (i.e.,
all of its features are mandatory), then this model is called Application Model
(AM).

3 Contribution
In this section, we present our contribution. First, we present an overview of our
approach. Second, we provide its benefits. Third, we lead a rigorous discussion
of the features and constraints that have been modeled in the proposed FMSP .

3.1 Approach overview
In order to overcome the problems that have been enumerated in the intro-
duction P.1, P.2, P.3, P.4, P.5, P.6 and P.7, we propose an approach that
consists in developing an SPL, named SPLSP , for the feature modeling and the
mass-customization of SPs. In Fig. 2, we introduce an overview of our approach
including its implementation steps that will be presented in the following.

In the first step, the SPL developer realizes a FM, named FMSP , for the
SP feature modeling. In this FM, we propose that anything that is required
to develop SPs is modeled as a feature. For example, services, capabilities,
communication technologies and Design Patterns (DPs) are modeled as features.
In Fig. 3, we present the proposed FMSP which will be discussed in detail in
Sect. 3.3. This FM is design to be a DP-based service contract for SP. It
models 72 SP features including 16 SOA DPs [2] and the three communication
technologies SOAP, REST and MOM. In Table 1, the descriptions of all of these
features are presented and the DPs are illustrated with a color. We recall that
the 16 studied DPs are related to the service messaging category (see chapter

5



“Service Messaging Patterns” in [2]). The objective of the proposed FMSP is
to enable developers to generate fully functional, valid, DP-based and highly
customized SPs. We recall that this FMSP extends our earlier work [20] as
mentioned in the introduction. Also, some contents of Table 1 have been reused
from this same earlier work.

Developing SOA DPs and valid compound DPs is not a straightforward and
easy task and requires a solid core of expert knowledge [17]. Mathematically,
there exist 216 compound DPs that represent the existence or the non-existence
of the 16 studied DPs. However, not all of these compound DPs are valid.
For example, in order to use the Event-driven messaging DP, it is necessary
to use in conjunction the Service callback DP (see Table 1). Hence, if a
given compound DP includes the Event-driven messaging DP but omits the
Service callback DP, then this compound DP is invalid. One of the main chal-
lenges tackled in this work is to identify and model the valid compound DPs in
our FMSP . In this context, it is crucial to identify and model the constraints
between DPs in FMSP (see Sect. 3.3). We note that Erl [2] presents several re-
lationships between these DPs. However, he illustrates them in many dispersed
and not standardized diagrams. This makes difficult to properly identify their
constraints.

In the second step, in order to derive a SP, a developer needs to specialize
(i.e., refine) a FM, named FMSPspec , from FMSP (essentially by selecting and
deselecting features). The FMSPspec has two objectives. The first objective
is allowing to define the features that the SP developer wants to implement
in his/her SP. The second objective is permitting SC developers to discover
the optional features offered by the SP. For example, let us suppose that the
feature Direct authentication DP (see Table 1) is modeled as optional in
FMSPspec and in the SP accordingly. In this context, the SC developers can
discover from FMSPspec , that they have the choice to provide or not credentials
authentication, to use this feature, when developing their SCs to be able to
communicate with this SP.

In our previous work [20], in order to derive a SP, we have proposed to
instantiate an AM from FMSP . This allows certainly to consider the first
objective. However, the second objective cannot be respected because an AM
can only contain mandatory features (i.e., cannot include optional features).
This is why we propose, in this paper, to refine a FM (FMSPspec) from FMSP

in order to respect these two objectives.
In the third step, an automatic model to code transformation operation

will transform FMSPspec to the required SP. Afterwards, the SP developer can
manually adapt the generated SP to implement his/her application requirements
(e.g., defining the business logic of the SP).

In our approach, we propose, as a principle, that the FMSPspec of the SP
can be downloaded by the SC developers. The goal is to allow these developers
to discover the supported features of this SP in order to implement SCs that
can communicate correctly with it. In this context, our FMSP is designed to
include all the required features that must be discovered by SC developers so
they can realize SCs which can communicate correctly with all the possible SPs
that can be derived from this FM. To implement this principle, the FMSP that
has been proposed in [20] has been extended with other features which will be
discussed in Sect. 3.3. We note that this principle is widely used by the service
contracts WSDL [5] and WADL [6].

6



Asynchronous
queue DP

Atomic service
transaction DP

Acknowledgement

Persistent delivery

Event-driven
messaging DP

MOM

Reliable
messaging DP

Durable

Service
callback DP

Intermediate
routing DP

Service agent DP

Stateful
services DP

State
messaging DP

Service instance
routing DP

Internal
memrory

Storage
mode

Communication
technology

SOAP

1.1 1.2
Post

Get

Put

Delete

REST

InputOutput

OName

OType

OData class
name

Capability
name

Capability

Service

Service name

Service contract

SP address

State repository DP

Temporary memory

Propositional constraints:
1: (MOM ∧ Output) → (Atomic service transaction DP ∨ Acknowledgement)
2: OQueue ↔ (Service callback DP ∧¬ Event-driven messaging DP)
3: Dual protocols DP ↔ ((MOM ∧ REST) ∨ (MOM ∧ SOAP) ∨ (REST ∧ SOAP) ∨ (MOM ∧ REST ∧ SOAP))

Direct authentication DP

Dual protocols DP

Service
messaging DP

Contract
centralization DP

OData

IName

IType

IData class
name

IData

[1,n]

[1,n]

IData
package
name

OData
package
name

IValue

PasswordUsername

Topic JNDI OQueue JNDI

IQueue JNDI

MOM
configuration

Initial context factory

Provider URL Security principal

Security credentials

Connection consumer factory Connection provider factory

[1,n] [1,n]

State

Two way
state

Client ID

Subscription name

Messaging
metadata DP

SP name

OQueue

IQueue

Topic

OValue

Notational elements:

Feature Feature attribute Optional Mandatory

[min, max]

Cardinality-based
feature

Requires Excludes
XOR OR

Figure 3: Feature model for the service provider FMSP (design pattern features are colored)

7



3.2 Benefits
Our FMSP is designed to overcome the problems that have been enumerated
in the introduction: P.1, P.2, P.3, P.4, P.5, P.6 and P.7. We present in the
following the benefits of our FMSP and which problems they consider:

1. it relies on the FM notation which permits to efficiently model the features
and complex constraints of the SP. Also, its graphical presentation can be
easily interpreted to identify the features and constraints of SP. By using
the FAMILIAR tool [22], we calculate that our FMSP permits to derive a
capability in the SP with 372904 different possible configurations. In order
to derive a SP including its capabilities, a developer only needs to have
basic knowledges about the features of FMSP and to select the required
ones in line with the constraints of this FM. This facilitates the mass-
customization of SPs (considering Problems P.2, P.3, P.4, P.5, P.6 and
P.7);

2. it includes the required features and constraints to generate fully func-
tional, valid, DP-based and highly customized SPs. This reduces the de-
velopment costs (effort and time) of SPs (considering Problems P.2, P.3,
P.4, P.5 and P.7);

3. it is designed as a DP-based service contract for SP which is generic and
independent of the communication technologies. It can be considered as a
reference model [23] which reflects the variability of practical SP features
(considering Problems P.1, P.2, P.3, P.4, P.5, P.6 and P.7);

4. it models 16 DPs and their corresponding constraints. This permits to
easily identify and derive only valid compound DPs. By using the FA-
MILIAR tool [22], we have calculated that FMSP permits to derive 790
valid compound DPs from 216 possible ones (considering Problem P.1);

5. many benefits can be enumerated when expressing DPs as features in our
FMSP . DPs are introduced by veteran problem solvers in order to pro-
vide appropriate and proven design solutions. A DP shows the right level
of abstraction to describe a certain solution in a generic context, i.e., in-
dependently of the programming languages and platforms. It also has a
major benefit of providing a common language which it is understandable
by the developers instead of using terminologies related to a certain con-
text. For example, simply saying the Event-driven messaging DP [2] is
more efficient and easier than to explain it in details. Hence, integrating
DPs in our FMSP allows to ensure that the SPs that can be derived are
based on proven solutions (considering Problems P.1, P.2, P.4, P.5, P.6
and P.7).

3.3 Feature model for the service provider FFFMMMSSSPPP

In Fig. 3 and Table 1, we present our FMSP and descriptions of its features. In
this table, we highlight the feature attributes which represent the values that
need to be given by the developer to derive a SP. Also, we propose to classify the
features of FMSP into several categories that are presented in the first column
of this table. This help to better understand and interpret the proposed FMSP .

8



In the following subsections, we discuss in detail one-by-one the features and
constraints of each category, notably the ones of the modeled 16 DPs. It is
important to note that these features and constraints have been identified from
theoretical and practical conducted studies that are essentially based on these
works [2], [1], [24], [25], [4], [26].

Table 1: Descriptions of the features of FMSP (design pattern features are
colored)

C
at
eg
or
y

Feature name Fe
at
ur
e
at
tr
ib
ut
e

Description

SP
in
fo
rm

at
io
n

Service contract - Root feature
Contract central-
ization DP

- Gathering the SP features within the service contract
so it will be used by the SC as the sole entry point to
communicate with the SP

SP name + Name of the SP
SP address + Address of the SP

Se
rv
ic
e
an

d
ca
pa

bi
lit
y

Service [1,n] - Services of the SP
Service name + Name of a given service
Capability [1,n] - Capabilities of a given service
Capability name + Name of a given capability
Input - Input data of a given capability
IData [1,n] - Gathering the input data features
IName + Name of a given input data
IType + Type of a given input data (e.g., String)
IValue + An input value that will be given by the SC to invoke a

given capability
IData class name + Name of the class that encapsulates the input data

names and types
IData package
name

+ Name of the package that includes the input data classes

Output - Output data of a given capability
OData [1,n] - Gathering the output data features
OName + Name of a given output data
OType + Type of a given output data
OValue + Output value of a given capability that will be returned

to the SC

9



OData class
name

+ Name of the class that encapsulates the output data
names and types

OData package
name

+ Name of the package that includes the output data
classes

C
om

m
un

ic
at
io
n

Service messag-
ing DP

- Using a messaging-based communication between the
SC and SP to remove the need of persistent connections
(e.g., remote procedure call binary connections) and to
reduce coupling requirements

Dual protocols
DP

- Configuring a given capability to support two or more
communication technologies. This allows to accommo-
date different application requirements

Communication
technology

- Gathering communication technologies

REST - REST communication technology
Get - HTTP get method for REST
Post - HTTP post method for REST
Put - HTTP put method for REST
Delete - HTTP delete method for REST
SOAP - SOAP communication technology
1.1 - SOAP version 1.1
1.2 - SOAP version 1.2
MOM - Middleware Oriented Messaging (MOM) communica-

tion technology
MOM configura-
tion

- Gathering the MOM configuration information

Initial context
factory

+ Initial context that is required to access to the MOM
via a Java Naming and Directory Interface (JNDI)

Provider URL + MOM address that is required to access to this MOM
Connection
provider factory

+ Object name that encapsulates a set of MOM connection
configuration parameters that will be used by the SP to
access to this MOM

Connection con-
sumer factory

+ Object name that encapsulates a set of MOM connection
configuration parameters that will be used by the SC to
access to this MOM

Security creden-
tials

+ Username that is required to access to the MOM

Security principal + Password that is required to access to the MOM

10



Asynchronous
queue DP

- Deploying an intermediary MOM allowing the SP and
SC to asynchronously communicate and to indepen-
dently process messages by remaining temporally de-
coupled

IQueue - Input queue that implements the Asynchronous queue
DP to handle the asynchronous incoming SC messages

OQueue - Output queue that implements the Asynchronous
queue DP to handle the asynchronous outgoing SP mes-
sages

IQueue JNDI + A JNDI that allows to discover, look up and communi-
cate with IQueue

OQueue JNDI + A JNDI that allows to discover, look up and communi-
cate with OQueue

Event-driven
messaging DP

- Asynchronously sending the response messages of the
publisher (i.e., SP), when ready, to its corresponding
subscribers (i.e., SCs) through the MOM

Service callback
DP

- Redirecting the SP response messages to a callback ad-
dress that can be different of the requester SC address

Topic - Topic that implements the Event-driven messaging
DP

Topic JNDI + A JNDI that allows to discover, look up and communi-
cate with Topic

Se
cu

rit
y
an

d
re
lia

bi
lit
y

Atomic service
transaction DP

- Treating a group of the SP response messages as a single
work unit. The latter is wrapped in a transaction with
a rollback feature that resets all actions and changes if
the exchanging messages fails

Reliable messag-
ing DP

- Adding a reliability mechanism to the SP response mes-
sages in order to ensure message delivery. This mecha-
nism relies on acknowledging the SP messages and per-
sisting them in a data store

Persistent deliv-
ery

- Persisting the SP messages in a data store so they are
not lost if the MOM fails. Therefore, we ensure that the
SP messages are delivered to the SC

Acknowledgement - The MOM acknowledges the SP about its messages that
have been received by the SC

Durable - A durable MOM stores the messages of the publisher
(i.e., SP) for the subscribers (i.e., SCs) if the latter dis-
connect. Hence, we ensure that, upon reconnecting, the
subscribers will receive all these messages

Client ID + An identifiant that must be given by the SC to use the
feature Durable of MOM

Subscription
name

+ A subscription name that must be given by the SC to
use the feature Durable of MOM

11



Direct authenti-
cation DP

- Requiring that the SCs must provide authentication cre-
dentials (username and password) to invoke a capability

Username + A username that must be given by the SC for authenti-
cation

Password + A password that must be given by the SC for authenti-
cation

A
ge
nt

Service agent DP - Deferring some logic (e.g., logging messages) from ser-
vices to event-driven programs to reduce the size and
performance strain of services

Intermediate
routing DP

- Dynamically routing messages through a service agent
that relies on an intermediary routing logic

Messaging meta-
data DP

- Supplementing the messages headers, through service
agents, with metadata in order to share activity-specific
logic between SC and SP.

St
at
e

State - Gathering techniques that handle the state data of ca-
pabilities

Internal memory - Storing the state data in the SP internal memory
Stateful services
DP

- Managing and storing state data by intentionally state-
ful utility services

Service instance
routing DP

- Allowing a given SC to communicate with the same in-
stance of a given service to retain its state

Storage mode - Gathering the modes of how the state data are stored
Temporary mem-
ory

- Storing the state data in a temporary memory in the SP

State repository
DP

- Deferring storing state data from a temporary memory
to a state repository in the SP. The objective is to alle-
viate services from having to unnecessarily retain state
data in memory for extended periods

State messaging
DP

- Delegating the storage of state data to the SP response
messages instead to the SP internal memory. The ob-
jective is the same as the State repository DP

Two way state - Configuring both the SP and SC to delegate the storage
of state data in their outgoing messages

3.3.1 Service provider information features

The feature Service contract represents the root of FMSP . The feature
attributes SP name and SP address need to be valued by the SP developer
to specify the name and address of his/her SP. The values of these feature
attributes will allow the SC developers to realize SCs that can communicate
correctly with this SP.

We express the feature Contract centralization DP as mandatory for two

12



reasons. First, the FMSP is designed as a centralized service contract that
models the SP features. Second, this FM will be used by SCs as the sole entry
point to discover the features supported by the SP in order to correctly commu-
nicate with it. Implementing this DP permits to avoid developing different and
separated service contracts to model the SP features which can be problematic
as shown in Problems P.6 and P.7 in the introduction.

3.3.2 Services and capabilities features

The cardinality-based feature Service [1,n] allows the developer to implement
1 to n instances of services in his/her SP. Each instance has a name that is mod-
eled by its child feature attribute Service name. It also has a cardinality-based
feature Capability [1,n]. The latter allows the developer to implement 1 to n
instances of capabilities in each service instance. The other features of FMSP

are modeled as child features to each capability instance. Hence, it would be
possible to configure the variability of each capability instance differently and
independently. In FMSP , each capability can be configured with 372904 differ-
ent possible configurations, in particular, with different 790 valid compounds of
the 16 modeled DPs.

Each capability has a name that is modeled by the feature attribute Ca-
pability name. The optional features Input and Output and their children
permit to model the information about the input and output data of each ca-
pability. If these features have been omitted by the developer when deriving
a given capability in his/her SP, then this capability will not accept any input
data from SCs and will not return any result. In this case, the signature of this
capability will be: void capabilityName().

The cardinality-based features IData [1,n] and OData [1,n] specify the count
of the input and output data of each capability. These features contain in
particular the feature attributes IValue and OValue, respectively. The sole
objective of the mandatory feature attribute IValue is to inform the SCs that
they must provide an input value in the body of their request messages to invoke
a given capability. The optional feature attribute OValue gives the choice to the
SP developer to specify a static result of capabilities. In fact, capabilities often
have dynamic results that are defined in the business logic of capabilities. In
this case, the feature attribute OValue can be omitted by the developer when
deriving his/her SP. However, this feature attribute can be useful to test if a
given capability, with a given configuration, can be invoked correctly by SCs.

To implement a SP, it is important to permit the SP capabilities to take and
return objects (classes instances) as input and output data. In this context, the
classes that encapsulate these data need to be implemented as serializable so
their objects can be included in the SP and SC messages. We note that the use
of serializable classes is widely supported by the programming languages, like
Java and C#. In the other hand, to implement a SC that can communicate
correctly with this SP, these classes must be also implemented in this SC by
using the same names and packages that have been defined in the SP [27]. In
this context, as a requirement, the class and package names that are defined in
the SP must be discovered by the SC developers. This requirement has been
taking into consideration by modeling the mandatory feature attributes IData

13



class name, OData class name, IData package name and OData package name
in FMSP . The values of these feature attributes must be defined by the SP
developer to derive a valid SP and to allow SC developers to discover them.

3.3.3 Communication features

The SC needs to send a request message to the SP in order to invoke a ca-
pability. If this capability returns a response message, then the communication
type is called two-way. Otherwise, it is called one-way. In FMSP , selecting or
omitting the feature Output when deriving a SP will induce using the two-way
or one-way communication types, respectively.

In FMSP , we model the feature Service messaging DP as mandatory be-
cause the three modeled communication technologies SOAP, REST and MOM are
messaging-based, and the modeled DPs are related to the service messaging
category (see chapter “Service Messaging Patterns” in [2]). Erl [2] reports that
this DP is one of the most fundamental DPs because it permits to promote the
loose-coupling and interoperability design principles [1] by reducing the coupling
requirements between the SC and SP.

The feature Dual protocols DP requires that a given capability must sup-
port two or more communication technologies and vice-versa. The third propo-
sitional constraint defined in FMSP implements this requirement. Our FM al-
lows to implement a capability that can support the communication technology
SOAP with versions 1.1 or 1.2 or both. Also, a capability can be implemented
to support the communication technology REST with one or more HTTP meth-
ods. This allows to accommodate different application requirements for each
capability.

The features SOAP and REST rely on a synchronous communication for the
message exchanging between the SC and SP. The problem of the synchronous
communication is that it forces processing overhead in SC and SP because they
must wait and continue to consume resources (e.g., memory) until they finish
the message exchanging [2]. To overcome this problem, the asynchronous com-
munication is used as a solution which is implemented through the feature MOM
in our work. In this context, because the DP features Service callback DP,
Asynchronous queue DP and Event-driven messaging DP are dedicated for
an asynchronous communication, we define them as child features of the feature
MOM.

In the MOM, the SC messages are always carried on by an asynchronous queue
that reflected by the feature IQueue which is an implementation of the feature
Asynchronous queue DP [4]. This is the reason why we define these features
IQueue and Asynchronous queue DP as mandatory in FMSP . The feature
Asynchronous queue DP can be configured with two different ways when deriv-
ing a SP. The first way consists in selecting the feature Asynchronous queue DP
in conjunction with the feature Service callback DP and omitting the feature
Event-driven messaging DP. In this case, the SC and SP messages will be han-
dled by two different asynchronous queues that are modeled respectively by the
features IQueue and OQueue. The second way consists in selecting the feature
Asynchronous queue DP and omitting the features Service callback DP and
Event-driven messaging DP. In this case, all SC and SP messages are han-

14



dled by the same asynchronous queue that is modeled with the feature IQueue.
These two ways are taken into account in our work by modeling OQueue as an
optional feature, by defining the second propositional constraint in FMSP and
by modeling a “requires” constraint from the feature Service callback DP to
the feature Output.

In order to implement the feature Event-driven messaging DP, we rely on
the asynchronous topic [4] which is reflected by the feature Topic. The latter
is used to asynchronously redirect the response messages of the SP to its SC
callback addresses. To permit this redirection, we define, in FMSP , a “requires”
constraint from the feature Event-driven messaging DP to the feature Service
callback DP.

We model the child features attributes of the feature MOM configuration,
and the feature attributes IQueue JNDI, OQueue JNDI and Topic JNDI as
mandatory in FMSP for two reasons. First, they must be valued to imple-
ment a MOM in the SP. Second, they represent all the required information that
must be discovered by SCs so they can communicate with the MOM of the SP.

3.3.4 Security and reliability features

It is common to use the features Atomic service transaction DP and Re-
liable messaging DP in conjunction with the MOM to implement a reliable
asynchronous communication [2]. Hence, we express these features as children
of the feature MOM. Since the MOM communication technology ensures a loosely
coupled and an asynchronous communication between the SC and SP, then it
should inform the SC and SP if their outgoing messages have been successfully
received. In this context, the MOM should use either the features Acknowledge-
ment or Atomic service transaction DP [2], [4]. This requirement is consid-
ered in our work by defining these two features as mutually exclusive and by
defining the first propositional constraint in FMSP .

The features Atomic service transaction DP and Reliable messaging
DP can be only applied for the SP response messages, i.e., for the two-way
communication type (see Table 1). Thus, we define “requires” constraints from
these features to the feature Output.

In FMSP , the feature MOM can be configured to support the feature Durable.
The latter has the Client ID and Subscription name as mandatory child
feature attributes. Their sole objective is to inform the SCs that they must
value them in their request messages to use the feature Durable.

The objective of feature attributes Username and Password is to inform
the SCs that they must provide a username and a password, as metadata,
in their request messages to invoke a given capability when using the Direct
authentication DP. In this context, we define a “requires” constraint from the
feature Direct authentication DP to the feature Messaging metadata DP in
FMSP .

3.3.5 Agent features

15



The DP features Intermediate routing DP and Messaging metadata DP are
implemented through a service agent as shown in Table 1. Thus, we define them
as optional child features of the feature Service agent DP in FMSP .

In contrast of SOAP and REST, the SC request messages which are dedicated to
MOM do not explicitly contain information about the capability and service that
the SC wants to invoke. As a consequence, it would be not possible to invoke the
required capability and service. As a solution, we propose, to implement the
feature Intermediate routing DP which exploits the metadata (Messaging
metadata DP) presented in the SC request messages to dynamically routing
these messages to the required capability and service. To support this dynamic
routing, we define, in our FMSP , “requires” constraints from the feature MOM
to the features Intermediate routing DP and Messaging metadata DP.

From our study on SOA DPs [2], we notice that the four features Service
callback DP, Event-driven messaging DP, Atomic service transaction DP
and Reliable messaging DP require the feature Messaging metadata DP. This
requirement is already considered in our FMSP because (1) we have already
defined these four features as optional children to the feature MOM and we have
already defined a “requires” constraint from the feature MOM to the feature Mes-
saging metadata DP.

3.3.6 State features

Erl [2] reports that the service state DPs State messaging DP, Service in-
stance routing DP, Stateful services DP and State repository DP can be
implemented in conjunction in the SP. This requirement is implemented in our
FMSP by defining these DPs as alternative inclusive features.

In one hand, the feature State messaging DP works by delegating the stor-
age of state data to the SP messages, as metadata. In the other hand, the
features Stateful services DP and Service instance routing DP work by
supplementing the SP messages with a specific identifier (session or service in-
stance identifiers) for each SC, as metadata. These identifiers need to be incor-
porated in the SC messages so the SP can use them to manage correctly the
state of their corresponding SCs. In this context, as a requirement, the three
features State messaging DP, Stateful services DP and Service instance
routing DP need to rely on the features Messaging metadata DP and Output to
be able to supplement the SP messages with metadata. In order to implement
this requirement, given that these three features are modeled as alternative in-
clusive children of the feature State in FMSP , we define “requires” constraints
from the feature State to the features Messaging metadata DP and Output.

4 Evaluation
In order to show the merits and evaluate our approach including our FMSP (see
Figs. 2 and 3) in practice, we propose to use the case study of the Integrated Air
Defense (IAD) (see Fig. 4 [20]). The IAD is a command and control compound
of geographically dispersed force elements already in peace time as well as in
crisis. In Fig. 4, we illustrate 17 force elements which are grouped into three

16



Infantary

Command and
control system

Radars

Anti-crafts

Ground force

Jet aircrafts HelicoptersDrones

Air force

Maritime force

Aircraft carriers Submarines

FMSP 1spec

FMSP 2spec
FMSP 3spec FMSP 4spec

FMSP 5spec FMSP 6spec

FMSP 7spec FMSP 8spec FMSP 9spec
FMSP 10spec

FMSP 11spec FMSP 12spec

FMSP 13spec

FMSP 14spec
FMSP 15spec

FMSP 17spec
FMSP 16spec

Figure 4: Case study of the integrated air defense

17



main forces: ground force (command and control system, radars, anti-aircrafts
and infantry), air force (drones, helicopters and jet aircrafts) and maritime
force (aircraft carriers and submarines). These force elements communicate
with services to achieve their missions. One main requirement must be satisfied
to realize this IAD case study:
Requirement 1 Each of the 17 force elements illustrated in the IAD case study
is a SP that is responsible to implement its own features.

As illustrated in the introduction (see Problems P.1, P.2, P.3, P.4, P.5, P.6
and P.7), the SP feature modeling approaches that have been proposed in the
literature [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16] notably the SOA
traditional service contracts WSDL [5] and WADL [6] suffer from several prob-
lems to develop SPs. This prevents to efficiently realize IAD Requirement.
In order to overcome these problems and to efficiently realize IAD Require-
ment, we propose deriving for each SP of the 17 IAD force elements a specific
FMSPspec (e.g., see Fig. 5) from our FMSP (see Fig. 3). For example, in Fig. 4,
the FMSP 13spec includes the SP features of the command and control system
force element.

Using our FMSP has several benefits as mentioned in Sect. 3.2 notably it
facilitates the mass-customization of SPs. This is important especially when
we have numerous SPs to develop which it is the case of our IAD case study
(17 SPs to develop). Pohl et al. [18] show, from empirical investigations, that
developing a SPL allows to reduce the development costs of systems if there are
more than three or four systems to develop which it is our case (17 systems).

In fact, Erl [2] reports that the U.S. Department of Defense (DoD) has
decided to plan and manage its business IT (Information Technology) via an
architectural approach based upon SOA. The IAD system presented in Fig. 4 is a
part of the DoD’s business IT. He also reports that due to the scale, complexity
and diversity of the DoD’s business IT, the DoD developed a strategy with
guiding principles which relies on the SOA DPs [2]. In this context, because our
FMSP relies on the SOA DPs, it can help to contribute to develop this DoD’s
business IT.

In Fig. 5, we present an example of a derived FMSPspec from FMSP for the
command and system IAD force element (see Fig. 4). It is possible that this
FMSPspec contains different services and capabilities (see Fig. 3). For the sake
of simplicity, we derive this FMSPspec to contain a single Service which it is
composed of a single Capability. The latter has a single Input data and a
single Output data. Overall, it contains 66 features, notably:

• features that forms a valid compound of the modeled 16 DPs;

• features that define the information about the SP and its Service and
Capability;

• features that define the variability of the communication technologies that
can be used by SCs to invoke the Capability. We note that the SOAP
version 1.2, REST with the HTTP methods Get and Post, and MOM have
been selected;

• optional features like the Direct authentication DP, Service callback
DP and Event-driven messaging DP that can be used or not by SCs to
invoke the Capability.

18



Asynchronous
queue DP

Atomic service
transaction DP

Persistent delivery

Event-driven
messaging DP

MOM

Reliable
messaging DP

Durable

Service
callback DP

Intermediate
routing DP

Service agent DP

Stateful
services DP

State
messaging DP

Service instance
routing DP

Internal
memrory

Storage
mode

Communication
technology

SOAP

1.2

REST

InputOutput

OName

OType

OData class
name

Capability
name

Capability

Service

Service name

Service contract

SP address

State repository DP

Propositional constraints:
2: OQueue ↔ (Service callback DP ∧¬ Event-driven messaging DP)

Direct authentication DP

Dual protocols DP

Service
messaging DP

Contract
centralization DP

OData

IName

IType

IData class
name

IData

IData
package
name

OData
package name

IValue

PasswordUsername

Topic JNDI OQueue JNDI

IQueue JNDI

MOM
configuration

Initial context factory

Provider URL Security principal

Security credentials

Connection consumer factory Connection provider factory

State

Two way
state

Client ID

Subscription name

Messaging
metadata DP

SP name

OQueue

IQueue

Topic

Notational elements:

Feature Feature attribute Optional Mandatory

[min, max]

Cardinality-based
feature

Requires Excludes
XOR OR

Post

Get

Figure 5: Example of a derived feature model of a service provider FMSPspec from FMSP (design pattern features are colored)

19



The values of the feature attributes defined in FMSPspec are given in Table 2.
Some feature attributes allow to define information about the SP, its capability
and service, and the MOM configuration, like SP address, Capability name
and Provider URL. Some others are dedicated to be valued by SCs in order to
invoke the SP capabilities like IValue.

Table 2: The values of the feature attributes of FMSPspec that is illustrated in
Fig. 5

Feature attribute Value

SP
in
fo
rm

at
io
n,

se
rv
ic
e
an

d
ca
pa

bi
lit
y

SP name SP_command
SP address http://localhost:8080/SP_command

Service name Personal
Capability name login

IName id
IType String

IData class name Session
IData package name SP_command.input

OName isLogged
OType Boolean

OData class name SessionResponse
OData package name SP_command.output

M
O
M

co
nfi

gu
ra
tio

n

Initial context factory org.jboss.naming.remote.client.InitialContextFactory
Provider URL remote://localhost:4447

Connection provider factory ConnectionFactory
Connection consumer factory RemoteConnectionFactory

Security principal guest
Security credentials guest_PassWorD

IQueue JNDI SP_command_in_queue_Personal_login
OQueue JNDI SP_command_out_queue_Personal_login

Topic JNDI SP_command_topic_Personal_login

SC

IValue It needs to be valued in the SC
Username It needs to be valued in the SC
Password It needs to be valued in the SC
Client ID It needs to be valued in the SC

Subscription name It needs to be valued in the SC

20



We developed a tool [28] that relies on the Apache Velocity1 tool (a model-
to-code template engine) in order to transform a given FMSPspec to the artifacts
of the corresponding SP. Our tool relies on Java EE technologies. It generates
SPs based on the Enterprise Service Bus (ESB) Switchyard [26]. The latter is a
recent free software ESB that relies on the service component architecture [29]
which is a technology-neutral assembly capability allowing the composition of
services in SPs. It includes different technologies, notably the HornetQ [4] to
implement the feature MOM, Apache CXF [3] to implement the features SOAP and
REST, and Apache Camel [24] to implement DPs. These technologies are inte-
grated on demand in the generated SP depending on the features of FMSPspec .
Our tool also relies on the SPL tool FAMILIAR [22] to develop and manage
the FMSP and FMSPspec (e.g., to check that FMSPspec is a specialization of
FMSP ).

From the FMSPspec illustrated in Fig. 5, our tool succeeds to automatically
generate a fully functional, valid, DP-based and highly customized SP. This
generated SP has been successfully deployed in the JBoss Java server without
any further manual interventions. It should be noted that the SP developer
needs to manually adapt the generated SP to implement his/her application
requirements (e.g., defining the business logic of the SP). The generated SP is
composed of 334 Java code instructions and five XMLs2. These XMLs permit
to configure the SOAP and MOM communication technologies and to configure
the ESB Switchyard. The time required to derive the FMSPspec (see Fig. 5)
and generate its corresponding SP is one minute. By using the SOA traditional
service contracts WSDL and WADL, and by relying on the tools that are offered
by the ESB Switchyard, we require more than 20 minutes to develop the same
SP and we need many manual interventions. Hence, we can say that using our
FMSP reduces the development costs (effort and time) of SPs.

In order to ensure that all the possible SPs, including the possible 790 com-
pound DPs, that can be derived from our FMSP are valid and fully functional,
we implement in our tool [28] an automatic test functionality that generates
all the possible SPs from FMSP . These generated SPs have been successfully
deployed in the JBoss Java server without errors and any further manual inter-
ventions. Hence, we can assume that these SPs are valid and fully functional.

5 Related work
In the literature, many works have been proposed to model the features and
variability of SP and DPs [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. In
Table 3, we present these works and compare them with our approach notably
with our FMSP (see Fig. 3) by relying on the following criteria:

• which feature modeling approach is used?

• do the SP features are modeled?

• do the modeled features include the required information that need to be
discovered by the SC developers in order to realize SCs that can commu-
nicate correctly with a given SP?

1http://velocity.apache.org
2https://github.com/MSPL4SOA/MSPL4SOA-tool/tree/master/generated_SPs_SCs/conf/sp

21



• which communication technologies are modeled?

• does the variability of the communication technology features is modeled?

• do the DP features are modeled?

• does modeling compound DPs is considered?

• which DP type is modeled?

• does the code generation is supported. If it is the case, does the generated
code is semi or fully functional?

Table 3: Comparing our approach notably our FMSP with related works
(Generic: modeling more than two communication technologies; OOP: Object
Oriented Pattern; DREP: Distributed Real-time and Embedded Pattern)

Work
Feature
modeling
approach

SOA Design pattern
Generated

codeSPSC
Communication tech.

SingleCompound Type
Features Variability

WSDL [5] XML + + SOAP + - - - Fully
WADL [6] XML + + REST + - - - Fully

Wada et al. [7] FM + - + (n/a) + - - - Semi
Fantinato et al. [9] FM + - SOAP + - - - Semi

Ed-douibi et al. [12] EMF + - REST + - - - Semi
Parra and Joya [8] FM + - Generic - - - - Semi

Kajsa and Návrat [13] FM - - - - + - OOP Semi
Street Fant et al. [14] FM - - - - + + DREP -

Seinturier et al. [10], [11] FM + - Generic + - - - Semi
Our approach FM + + Generic + + + SOA Fully

From this table, we can notice that, in contrast with the related works, our
FMSP supports all the criteria. To summarize, it permits to generate fully
functional, valid, DP-based and highly customized SPs for different communi-
cation technologies (i.e., generic) while modeling the required features that need
to be discovered by the SCs to communicate correctly with these SPs. In the
following, we discuss the related works presented in this table by highlighting
their major contributions and showing how they can be used to extend and
enhance our FMSP for potential future works.

WSDL [5] and WADL [6] are two widely used service contracts that model
the SP features of the communication technologies SOAP and REST, respec-
tively. Our FMSP is designed to extend these service contracts so it would be
possible to generate DP-based SPs for different communication technologies.

Wada et al. [7] propose a FM that models SP non-functional features. Al-
though their FM includes communication features, it does not explicitly specify
which communication technologies are supported. This is why we put the sym-
bol “+ (n/a)” in Table 3. Their FM can be used to extend our FMSP in order
to support SP non-functional features.

22



Parra and Joya [8] propose a FM that expresses the SOAP, REST and EJB
communication technology features. However, in contrast with our FMSP , their
FM does not model the variability of these communication technology features,
i.e., it does not model their possible configurations. As an instance, the HTTP
methods (post, get, put and delete) that can be used by REST and the versions
of SOAP are not modeled. Fantinato et al. [9] elaborate a FM that models
the features of the communication technology SOAP. These two FMs [8], [9],
as reported by their authors, need to be extended with the features (e.g., input
and output data) of capabilities and services of SP so they can generate fully
functional SPs. This has been considered in our FMSP .

Seinturier et al. [10], [11] propose a FM to model the features of their FraS-
CAti tool. The latter is a component framework and an implementation tech-
nology providing runtime support for the service component architecture [29] in
SOA. Our FMSP has a higher level of abstraction than their FM because it is
based on generic SOA DPs that are independent to the implementation tech-
nologies. Their FM can be used in conjunction with ours to be able to generate
highly customized SPs dedicated for specific implementation technologies.

Ed-douibi et al. [12] introduce EMF data models that are dedicated to
express the features of the communication technology REST. These models can
be used to extend our FMSP with more REST features (e.g., security features).

Kajsa and Návrat [13] introduce a FM that models the features of the object
oriented DPs [30]. The goal is to enable generating, on demand, the code of a
specific DP. The advantage of our FMSP is that it allows to generate the code
of DPs and also of compound DPs.

Street Fant et al. [14] elaborate a FM that expresses the features of a set
of distributed real-time and embedded DPs. For each DP, they elaborate UML
diagrams (collaboration, interaction, component and state machine diagrams)
to identify its variability and behavior. The objective is to generate customized
DPs and compound DPs with customized diagrams. In our work, we focus on
generating the code of SOA DPs rather than generating their UML diagrams.
Their work can be useful in our approach to generate customized diagrams for
SOA DPs.

6 Conclusion
In this paper, we have proposed an approach that consists in developing a Soft-
ware Product Line (SPL) for the mass-customization of Service Provider (SP)
in Service Oriented Architecture (SOA). Essentially, we have introduced a Fea-
ture Model (FM), named FMSP , for the SP feature modeling. Its objective is
to enable developers to generate fully functional, valid, DP-based and highly
customized SPs for different communication technologies while modeling the re-
quired features that need to be discovered by the SCs to communicate correctly
with these SPs. Our FMSP is designed as a DP-based service contract for
SP that models 72 features. In particular, it includes the features of the three
communication technologies Simple Object Access Protocol (SOAP), REpresen-
tational State Transfer (REST) and Middleware Oriented Messaging (MOM). It
also includes the features of 16 SOA DPs that are related to the service messag-
ing category. It is important to note that our FMSP allows to derive only valid
compounds from these DPs which is crucial to drive valid SPs. Based on the

23



features and constraints that are modeled in FMSP , we have calculated that
it permits to derive 790 valid compound DPs from 216 possible ones. Also, we
have calculated that our FMSP expresses 372904 possible configurations that
can be used to derive a highly customized capability in the SP.

We have demonstrated through a practical case study and a developed tool,
that our FMSP is valid and permits to reduce the development costs (effort
and time) of SPs. We have also shown the efficiency of our FMSP compared
with some SP feature modeling approaches that have been proposed in the lit-
erature, notably the two widely used service contracts Web Services Description
Language (WSDL) and Web Application Description Language (WADL).

In future research, we plan to extend our FMSP by other features, espe-
cially with security DPs, in order to generate more complex and secured SPs.
Currently, we are working on developing an SPL, including a FM, that is ded-
icated for Service Consumer (SC). The objective is to enable SC developers to
generate fully functional, valid, DP-based and highly customized SCs that can
communicate correctly with all the possible SPs that can be derived from our
FMSP .

References
[1] Thomas Erl. SOA Principles of Service Design. Prentice Hall, 2007.

[2] Thomas Erl. SOA Design Patterns. Prentice Hall, 2009.

[3] Naveen Balani and Rajeev Hathi. Apache CXF Web Service Development.
Packt Publishing, 2009.

[4] Piero Giacomelli. HornetQ Messaging Developer’s Guide. Packt Publishing,
2012.

[5] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-
awarana. WSDL 2.0. https://www.w3.org/TR/wsdl20, 2007.

[6] Marc Hadley and Sun Microsystems. WADL. https://www.w3.org/
Submission/wadl, 2009.

[7] Hiroshi Wada, Junichi Suzuki, and Katsuya Oba. A feature modeling sup-
port for non-functional constraints in service oriented architecture. In Pro-
ceedings of the 4th IEEE International Conference on Services Computing
(SCC’2007), pages 187–195, Salt Lake City, Utah, USA, July 2007.

[8] Carlos Parra and Diego Joya. SPLIT: an automated approach for enterprise
product line adoption through SOA. Internet Services and Information
Security, 5(1):29–52, 2015.

[9] Marcelo Fantinato, De Toledo Maria Beatriz Felgar, and De Souza
Gimenes Itana Maria. WS-contract establishment with QOS: an approach
based on feature modeling. Cooperative Information Systems, 17(03):373–
407, 2008.

24



[10] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero, Valerio
Schiavoni, and Jean-Bernard Stefani. A component-based middleware plat-
form for reconfigurable service-oriented architectures. Software: Practice
and Experience, 42(5):559–583, 2012.

[11] Feature model of FraSCAti. http://frascati.ow2.org/doc/1.4/ch12s02.html.

[12] Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, Abel Gómez, Massimo
Tisi, and Jordi Cabot. EMF-REST: generation of RESTful APIs from
models. In Proceedings of the 31st Annual ACM Symposium on Applied
Computing (SAC’2016), pages 1446–1453, Pisa, Italy, 2016.

[13] Peter Kajsa and Pavol Návrat. Design pattern support based on the
source code annotations and feature models. In Proceedings of the 38th
International Conference on Current Trends in Theory and Practice of
Computer Science on SOFtware SEMinar (SOFSEM’2012), pages 467–478,
Špindlerův Mlýn, Czech Republic, January 2012.

[14] Hassan Gomaa, Julie Street Fant, and Robert G Pettit IV. A pattern-
based modeling approach for software product line engineering. In Pro-
ceedings of the 46th Hawaii International Conference on System Sciences
(HICSS’2013), pages 4985–4994, Maui, Hawaii, USA, Jan 2013.

[15] Akram Kamoun, Mohamed Hadj Kacem, and Ahmed Hadj Kacem. Feature
model for modeling compound SOA design patterns. In Proceedings of the
11th ACS/IEEE International Conference on Computer Systems and Ap-
plications (AICCSA’2014), pages 381–388, Doha, Qatar, November 2014.

[16] Akram Kamoun, Mohamed Hadj Kacem, and Ahmed Hadj Kacem. Multi-
ple software product lines for software oriented architecture. In Proceedings
of the 25th IEEE International Conference on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE’2016), pages 56–61,
Paris, France, June 2016.

[17] Douglas C. Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann, Kevin
Henney, Regine Meunier, Peter Sommerlad, and Michael Kircher. Pattern-
Oriented Software Architecture (POSA), volume 1-5. Wiley, 1996-2007.

[18] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. Software Product
Line Engineering. Springer, 2005.

[19] Krzysztof Czarnecki, Simon Helsen, and Eisenecker Ulrich. Staged configu-
ration through specialization and multilevel configuration of feature models.
Software Process: Improvement and Practice, 10(2):143–169, 2005.

[20] Akram Kamoun, Mohamed Hadj Kacem, Ahmed Hadj Kacem, and Khalil
Drira. Feature model based on design pattern for the service provider in
the service oriented architecture. In Proceedings of the 19th International
Conference on Enterprise Information Systems (ICEIS’2017), pages 111–
120, Porto, Portugal, April 2017.

[21] Kyo C. Kang and Hyesun Lee. Systems and Software Variability Manage-
ment: Concepts, Tools and Experiences. chapter 2: Variability Modeling,
pages 25–42. Springer, 2013.

25



[22] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France.
FAMILIAR: a domain-specific language for large scale management of fea-
ture models. Science of Computer Programming, 78(6):657–681, 2013.

[23] Matthias Galster, Paris Avgeriou, and Dan Tofan. Constraints for the
design of variability-intensive service-oriented reference architectures – an
industrial case study. Information and Software Technology, 55(2):428–441,
2013.

[24] Claus Ibsen and Jonathan Anstey. Camel in Action. Manning Publications
Corporation, 2011.

[25] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Addison-Wesley, 2004.

[26] Switchyard tool. http://switchyard.jboss.org.

[27] Antonio Goncalves. Begining Java EE 7. Apress, 2013.

[28] MSPL4SOA tool. https://mspl4soa.github.io, 2017.

[29] Simon Laws, Mark Combellack, Raymond Feng, Haleh Mahbod, and Simon
Nash. Tuscany SCA in Action. Manning Publications Corporation, 2011.

[30] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley,
1995.

26


