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Abstract

Industrial plant safety involves integrated management of all the factors that

may cause accidents. Process alarm management can be formulated as a pat-

tern recognition problem in which temporal patterns are used to characterize

di�erent typical situations, particularly at startup and shutdown stages. In this

paper we propose a new approach of alarm management based on a diagno-

sis process. Assuming the alarms and the actions of the standard operating

procedure as discrete events, the diagnosis step relies on situation recognition

to provide the operators with relevant information on the failures inducing the

alarm ows. The situation recognition is based on chronicle recognition where

we propose to use the hybrid causal model of the system and simulations to gen-

erate the representative event sequences from which the chronicles are learned

using the Heuristic Chronicle Discovery Algorithm Modi�ed ( HCDAM ). An

extension of this algorithm is presented in this article where the expertise knowl-

edge is included as temporal restrictions which are a new input toHCDAM .

An illustrative example in the �eld of petrochemical plants is presented.
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1. Introduction

The operation of many industrial processes, especially in the petrochemical

sector, involves inherent risks due to the presence of dangerous material such

as gases and chemicals which in speci�c conditions can cause emergencies [1].

Safety in industrial processes is supplied by layers of protection as illustrated5

by Figure 1. These layers initiate with a safe design and an e�ective process

control (Layers 1 and 2), followed by an "alarm " display to the operators (Layer

3) that may trigger manual operator actions. The next layer corresponds to the

automatic (Safety Instrumented System) prevention layer (Layer 4), continuing

with the layers (Layers 5, 6, and 7) to mitigate the consequences of an event10

(in safety theory an "event" corresponds to a dangerous situation that happens,

for example an explosion). Our work focuses on Layer 3. In the process state

transitions such as startup and shutdown stages, the alarm ood increases and

generates critical conditions in which the operator does not respond e�ciently

then, a dynamic alarm management is required [2]. The dynamics of a process15

can be represented by an approach that depicts the process behavior using the

events that occur. In this context, the chronicle approach has been applied in

many diagnosis applications. Applications such as diagnosis of network telecom-

munication [3], cardiac arrhythmia detection [4] and intrusion detection systems

[5] can be mentioned. Another application of the chronicles is the recognition20

in the setting of unmanned aircraft systems and unmanned aerial vehicles op-

erating over road and tra�c networks [6]. Chronicles are designed to provide

temporal patterns of total and partial order. While chronicles consider tempo-

ral constraints between event type occurrences, one of the main di�culties of

chronicle discovery is to guarantee robustness to variations. Another di�culty25

is to obtain automatically a base of chronicles that represents each situation.

To obtain relevant chronicles from a set of event sequences representing a given

situation, it is often necessary to incorporate expert knowledge. This paper

enhances the results of the chronicle learning algorithm proposed in [7] by in-

corporating expert knowledge in the form of temporal restrictions, as well as30
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Figure 1: Safety layers of protection from [1]

additional information that allows us to limit the conservatism of chronicles.

The paper is divided into 6 sections. Section 2 gives an overview on the rele-

vant literature of alarm management. Section 3 presents the problem statement

and overviews the new method Chronicle Based Alarm Management (CBAM).

Section 4 provides a background on chronicles including theHCDAM descrip-35

tion. Section 5 indicates the formal framework for this analysis with the repre-

sentation of the hybrid causal model and the qualitative abstraction of contin-

uous behavior. Finally, a case study is given in section 6 where an illustrative

application in the petrochemical sector is presented.

2. Alarm management review40

An alarm aims to alert the operator of deviations in the process variables

from normal operating conditions, i.e. abnormal operating situations. ISA-

18.2 de�nes an alarm as "An audible and/or visible means of indicating to the

operator an equipment malfunction, process deviation, or abnormal condition

requiring a response." . From this de�nition it appears clearly that an alarm is45

not a simple message or event but rather a condition directing the operator's
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attention to plant functioning in order to generate a timely assessment or action.

Because of the fundamental role of an alarm management, the attention of many

researchers has recently focused in themes such as alarm history visualization

and analysis, process data based alarm system analysis and plant connectivity50

and causality analysis that are further presented below.

2.1. Alarm historian visualization and analysis

A combined analysis of plant connectivity and alarm logs to reduce the

number of alerts in an automation system is presented in [8]; the aim of the

work is to reduce the number of alerts presented to the operator. If alarms55

are related one to another, those alarms should be grouped and presented as

one alarm problem. Graphical tools for routine assessment of industrial alarm

systems are proposed by [9]; two new alarm data visualization tools for the

performance evaluation of the alarm systems are presented. These tools are

called the high density alarm plot and the alarm similarity color map. In [10],60

event correlation analysis and two-layer cause-e�ect model are used to reduce the

number of alarms and a Bayesian method is introduced for multimode process

monitoring in [11]. These approaches allow to recognize alarm chattering, to

group many alarms or to estimate the alarm limits in transition stages, but the

dates of the alarm occurrences and the procedure actions are not considered.65

2.2. Data based analysis of alarm system

In [12] an operator model is used as a virtual subject to evaluate plant

alarm systems under abnormal situations. Another proposal [13] introduced a

technique for optimal design of alarm limits by analyzing the correlation between

process variables and alarm variables. In 2009 a framework based on the receiver70

operating characteristic curve was proposed to optimally design alarm limits,

�lters, dead bands, and delay timers; this work was presented in [14] and a

dynamic risk analysis methodology that uses alarm databases to improve process

safety and product quality was presented in [15]. In [16], the Gaussian mixture

model is employed to extract a series of operating modes from the historical75

4



process data. Then local statistics and its normalized contribution chart are

derived for detecting abnormalities early and for isolating faulty variables. These

approaches require numerous simulations and/or historical data, and are not

well suited in case of new plants for which historical data is not yet available.

2.3. Plant connectivity and causality analysis80

In the literature, transition monitoring of chemical processes has been re-

ported by many researchers. In [17] a dynamic alarm management strategy is

presented for chemical process transitions in which the arti�cial immune system-

based fault diagnosis method and a Bayesian estimation based dynamic alarm

management method are integrated. In another proposal [18], a fault diag-85

nosis strategy for startup process based on standard operating procedures is

presented. This approach proposes a behavior observer combined with dynamic

PCA (Principal Component Analysis) to estimate process faults and operator

errors at the same time. One can also mention the work related to direct causal-

ity detection via a transfer entropy approach in [19]. [20] overviews the modeling90

methods for capturing process topology and causality. [21] proposes fault de-

tection during process transitions: a model-based approach in which extended

Kalman �lters, Kalman �lters, and open-loop observers are used to estimate

process states during the transition and to generate residuals. [22] presents a

framework for managing transitions in chemical plants where a trend analysis-95

based approach for locating and characterizing the modes and transitions in

historical data is proposed. Finally, in [23] a hybrid model-based framework is

used for alarm anticipation where the user is preparing for the possibility of a

single alarm occurrence. For transition monitoring, these types of techniques

are used in industrial processes and the hybrid model based framework is a100

possible representation of a petrochemical system. A causal model allows to

identify the root of the failures and to check the correct evolution in a transi-

tional stage. Our proposal is closer to this third type of approach as it seeks to

exploit the causal relationships between process variables and procedure actions

as explained in the next sections.105
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3. Problem statement and method overview

As explained in the previous section, alarm oods are an important aspect

of safety for industrial plants. Therefore, the operators need a tool that help

them recognize the plant situation, specially in the transitional stages such

as startup and shutdown. In this work, we propose to generate models that110

describe the process evolution on a discrete level. These models, which can be

used to perform diagnosis, can take the form of temporal patterns. In this paper

we have chosen to work with chronicles [24].

Chronicles represent temporal patterns of situations for speci�c scenarios.

Designing the chronicles involves di�culties as the generation of the event se-115

quences for learning and the use of expert knowledge. This paper proposes

a comprehensive methodology that permits the event sequence generation for

learning chronicles representing di�erent situations of the plant. The Chroni-

cle Based Alarm Management (CBAM) methodology that is proposed merges

di�erent techniques to take the hybrid aspect and the standard operational pro-120

cedures of the concerned process into account. These two features stand out of

the literature ([18],[23],[22],[21]). Another important aspect is the analysis of

dynamic alarm management as most of the time, the alarm is assumed to be a

static indicator. In our proposal an alarm is an event with an occurrence date

and the expected alarm ow is formally modeled by a chronicle [25],[26]. The125

position of our approach with respect to other approaches stands in that we use

information about the procedural actions related to the behavior of continuous

variables for the situation awareness process. Speci�c information is obtained

in each step of the CBAM methodology and it is summarized in three steps:

event type identif ication , event sequence generationand chronicle database130

construction :

1. Event type identif ication : From the standard operating procedures and

from the evolution of the continuous variables, this step determines the

set of event types in startup and shutdown stages.

2. Event sequence generation: From the expertise and an event abstraction135
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procedure this step determines the date of occurrence of each event type

for constructing the representative event sequences. A representative event

sequence is the set of event types with their dates of occurrence that can

be associated to a speci�c scenario of the process.

3. Chronicle database construction: From the representative event sequences140

in each scenario, this step determines the chronicle database using the

Heuristic Chronicle Discovery Algorithm Modi�ed (HCDAM ).

In a general way, chronicle learning requires a lot of representative event

sequences of each scenario. In our case no historical information related to

startup or shutdown stages is available, as these types of scenarios do not occur145

frequently. Therefore, it is by simulation using a fault injection framework that

the representative event sequences of each scenario are obtained. The di�erent

steps of this methodology, detailed further in the article, base their formalization

on the works [7],[27],[28].

4. Background on chronicles150

Chronicles correspond to temporal patterns. A chronicle is associated to each

situation to recognize, normal or abnormal. During the operation of the system,

several sensors are used to retrieve information about the system's status over

time. This record is then decomposed into a series of discrete events to generate

an event sequence. Then, a chronicle recognition algorithm fed by this sequence155

looks for the chronicles that are recognized. The situation in which the system

is then deduced accordingly. Let us consider time as a linearly ordered discrete

set of instants. The occurrence of di�erent events in time represents the system

dynamics and a model can be determined to diagnose correct evolution.E is

de�ned as the set ofevent typesand an event is de�ned as a pair (ei ; t i ), where160

ei 2 E is an event type andt i is a variable of integer type called the event date.

Without loss of generality, we assume that two events cannot occur at the same

instant, i.e. simultaneously. In the following, we may refer to an event type as

an event for short. A temporal sequenceon E is denoted as an ordered set of
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events S = h(ei ; t i ) j i with j 2 N l where l is the size of the temporal sequence165

S and N l is a �nite set of linearly ordered instants of cardinal l . l= j S j is the

size of the temporal sequence, i.e. the number of event type occurrences inS.

De�nition 1 (Chronicle). A chronicle is de�ned as a triplet C = ( E; T ; G)

such that:

� E � E , where E is called the typology of the chronicle,170

� T is the set of temporal constraints of the chronicle,

� G = ( V; A ) is a directed graph where:

{ V is a set of indexed event types, i.e. a �nite indexed family de�ned

by � : K ! E , where K � N,

{ A is a set of edges between indexed event types; there is an edge175

(ei k 1
; ej k 2

) 2 A if and only if there is a time constraint betweenei k 1

and ej k 2
.

Given a set of event typesE, the space of possible chronicles can be struc-

tured by a generality relation.

De�nition 2 (Generality relation among chronicles). A chronicle180

C = ( E; T ; G) is more general thana chronicle C0 = ( E0; T 0; G0), denotedC v C0,

if E � E 0 or 8� ij 2 T ; � ij � � 0
ij . Equivalently, C0 is said stricter than C.

If the event e1 occurs t time units after e2, then it exists a directed link A

from e1 to e2 associated with a time constraint. Considering the two events

(ei ; t i ) and (ej ; t j ), we de�ne the time interval as the pair � ij = [ t � ; t+ ] 2 T ,185

where t � ; t+ 2 Z correspond to the lower and upper bounds on the temporal

distance between the two event datest i and t j . For instance, the constraint

ei [� 3; 1]ej allows ei to preceedej by 1 time unit while it also allows ei to follow

ej up to 3 time units.

De�nition 3 (Chronicle instance). A chronicle C = ( E; T ; G) is recognized190

in a temporal sequenceS of event typesE0, such that E � E 0 when all the
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Figure 2: Example of chronicle instances (marked green)

temporal constraints T are satis�ed. Then Cinst = ( E; Tv ) is an instance of C,

where Tv is a valuation of T .

Figure 2 illustrates the above de�nition: the chronicle on the left is recog-

nized in the �rst and second sequences. Nevertheless, it is not recognized in the195

third sequence because the only set of constraints relatinga, b, c, and d in this

sequence isTv = f a[5; 5]b; a[3; 3]c; c[2; 2]b; b[2; 2]dg and Tv is not a valuation of

T = f a[3; 4]b; a[1; 2]c; c[1; 2]b; b[1; 2]dg.

4.1. Chronicle discovery

One of the major problems associated with chronicle-based diagnosis is to ob-200

tain chronicles characterizing the situations. Chronicle discovery is the problem

of exhibiting the strictest chronicles present in a trace. One wants to obtain the

strictest chronicles, which are therefore the most likely to correctly characterize

the situation (and therefore the traces) that we want to detect. In practice,

these are often built "by hand" by experts. How to acquire and update auto-205

matically chronicles is an issue. Model based chronicle generation approaches

have been developed in the last decades. For instance, in [28] the runs of the

monitored system are described in the temporal tiles formalism. The authors

propose an algorithm inspired of Petri net unfolding to build all the tempo-

ral runs of the system. Then, the projection of these runs on the observable210

part allows to de�ne the chronicles. Other approaches have been investigated

from learning theory for unearthing patterns from input data. One can consider
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for instance learning techniques based on Inductive Logic Programming (ILP)

([29],[4]), case-based chronicle learning of ([30],[31]) that is a characteristic su-

pervised method by reinforcement learning but also ([32],[33],[34]) that adapt215

a clustering method to learn chronicles in an unsupervised way by projecting

chronicle instances into a normative space. Finally, chronicles are also acquired

from approaches that analyze logs and extract the signi�cant patterns by tem-

poral data mining techniques ([35]). The objective of temporal data mining

techniques is to discover all patterns of interest in the input data, by means of220

an unsupervised approach.

There are several ways to de�ne the relevance of a pattern. Among these

methods, the frequency criterium is widely used ([36],[37],[38]). In [6],[39], the

chronicle learning problem is motivated by discovering the most frequent alarm

patterns in telecommunication alarm logs and their correlations. The tool, called225

FACE (Frequency Analyzer for Chronicle Extraction), extracts the frequent

patterns by carrying out a frequency-based analysis on sublogs, de�ned on time

windows of �xed duration.

The learning algorithm integrated in this article is also based on a frequency

criterium ([7],[26]) and can be related to [36] and [37]. The proposal in [36] makes230

it possible to discover, given a traceS and a threshold frequencyf t , chronicles

of frequency f � f t in S. We do not detail this algorithm in depth, but the

principle is the following. For each pair of event typesei ,ej 2 E, they associate a

temporal constraint (that one can deduce fromS, several heuristics are possible).

They then construct for each of these pairs the associated chronicle. Those235

whose frequency is� f t are kept and completed by adding an event type, as

well as the associated constraints. One repeats on the latter. Little by little,

more and more constrained chronicles are being built up untilf < f t , in which

case the branch is stopped. The problem with this algorithm is that it does not

allow the complete discovery of chronicles. It can �nd traces from the base of240

Dousson & Vuduong, but it does not generate all the frequent chronicles.

Cram's algorithm solves Dousson & Vuduong's non-completeness problem

by adding more possibilities for temporal constraints attached to pairs of event
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types [37]. The idea is also to build the chronicles little by little, but this time

from a base of constraint graphs. For each pair ofE (pair of event types present245

in the trace S used for learning) a constraint graph is constructed, that is to

say a set of intervals ordered by the relation� . The objective is then to build

chronicles by adding event types as in the Dousson algorithm or by further

constraining one of the constraints guided by the constraint graph.

4.2. Learning chronicles with HCDAM250

In many cases the same situation does not imply temporal sequences per-

fectly identical. HCDAM has been proposed in [7] to learn the chronicles whose

instances occur in all event sequences representing the same situation. Its prin-

ciples are briey reminded in this section and the reader is referred to [7] for a

detailed presentation.255

Given a set of sequencesS and a minimum frequency threshold, it �nds all

minimal frequent chronicles presented in all temporal sequences. The chronicle

learning algorithm has the following three phases:

1. Filtering operation

2. Building a constraint database from the temporal sequences260

3. Generating a set of candidate chronicles

We briey describe the steps that make up HCDAM using 3 sequences to

illustrate each of them. The sequences are described below:

S1 = h(b;1); (a; 3); (b;4); (b;5)i (1)

S2 = h(a; 1); (b;2); (b;3); (a; 6)i (2)

265

S3 = h(a; 1); (b;2); (b;4); (c;5); (b;7)i (3)

4.2.1. Phase 1

The f iltering operation is a preliminary process on sequences and it can be

summarized as two possible actions:
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� Filtering the event types that are not present in all sequencesS. If 9Sk 2 S

such as9ei 62Sk , then ei is removed of all other sequences.270

� Filtering on a given set of event typesf ei 1 ; ei 2 ; ::ei r g � E if we are inter-

ested only in those event types during processing.

After, �ltering the sequences, the set of occurrencesO = f Ok
ij g that contains

all the instances of a pair of event types (ei ,ej ) in Sk is determined. Back to

the example, the set of occurrences for the pair (a,b) in the sequencesS1, S2275

and S3 are:

O1
ab = fh(a;3); (b;1)i ; h(a; 3); (b;4)i ; h(a; 3); (b;5)ig (4)

O2
ab = fh(a; 1); (b;2)i ; h(a; 1); (b;3)i ; h(a; 6); (b;2)i ; h(a; 6); (b;3)ig (5)

O3
ab = fh(a; 1); (b;2)i ; h(a; 1); (b;4)i ; h(a; 1); (b;7)ig (6)

In addition, the set of durations Du = f D k
ij g is computed. Du contains the

time intervals between the occurrence dates for each pair of event types. This

interval is calculated as follows:

D k
ij = f dk

ij = ( t j � t i ) j< (ei ; t i ); (ej ; t j ) > 2 Ok
ij g (7)

The sets of durations for the pair (a,b) in the sequencesS1, S2 and S3 are:280

D 1
ab = f� 2; 1; 2g, D 2

ab = f 1; 2; � 4; � 3g and D 3
ab = f 1; 3; 6g.

The frequencyf k
ij of each pair (ei ; ej ) in the sequenceSk corresponds to the

maximal number of occurrences of the pair in the sequenceSk . The maximal

frequencyf max of each pair (ei ; ej ) is the maximal number of occurrences of the

pair considering all the sequencesSk 2 S. The example of frequencyf k
ij and285

f max for the pair (a,b) in the sequencesS1, S2 and S3 is: f 1
ab=3, f 2

ab=4, f 3
ab=3

and f max =3.
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4.2.2. Phase 2

In a second phase, HDCAM builds the so-calledconstraint databaseD that

stores every temporal constraint � ij = ei [t � ; t+ ]ej that is frequent in all the290

sequences ofS. D is organized as a set of treesT �
ij for each pair of event types

(ei ; ej ) with i; j = 1 ; : : : ; j E j; i � j and � = 1 ; : : : ; nij .

In the trees, time constraints are nodes and arcs represent the relationship

is parent of de�ned as below:

De�nition 4 ( is parent of relation). The node ei [t � ; t+ ]ej is parent of295

ei [t0� ; t0+ ]ej if and only if [t0� ; t0+ ] � [t � ; t+ ] and there does not existei [t00� ; t00+ ]ej

such that this [t0� ; t0+ ] � [t00� ; t00+ ] � [t � ; t+ ].

The root of a tree T �
ij is a temporal constraint ei [t � ; t+ ]ej such that the

number of occurrences of the pair (ei ; ej ) is maximal in all sequences ofS. It

represents the 2-length chronicle with topologyE = f ei ; ej g that is the most300

general for all temporal sequences ofS and the child nodes are stricter 2-length

chronicles with the same typology.

The reader can refer to [7] for the details of the method used in HDCAM

for determining the trees for each pair and in particular their roots.

Considering the case of the three sequencesS1, S2, and S3 of the running305

example given by (1), (2), and (3) respectively, the pair (a; b) and the pair (b; b)

each give rise to one tree (T1
ab and T1

bb respectively). These are represented in

Figure 3, with the mention of the frequency associated to the constraints of each

level of the trees. The tree for (a; b) has three levels for frequency 3 to 1 from

top to bottom and the tree for the pair ( b; b) has only one level for frequency 1.310

Any of the constraints of a given level guarantees that the pair appears exactly

with the frequency associated to the level in all the sequences.

4.2.3. Phase 3

The generation of a set of candidate chronicles initializes with a set of chron-

icles that were proved to be frequent and it uses the constraint databaseD to315

explore the chronicle space. This can be resumed by the following steps:

13



Figure 3: Constraint tree for the pairs (a,b) and (b,b)

� The set of candidates initiates with the set of tree roots

� Use the operator "add event". This operator, checks at the constraint

trees in order to �nd the restrictions of an event type " with all elements

of E .320

� Count the minimal number of occurrences of the candidate inS

Once the constraint tree is generated chronicles are extracted according to

two thresholds: f min (or f =1 when not de�ned) and f max . The search starts

from a constraint of maximum frequency. i.e root of the tree, which is the

initial chronicle. This chronicle is then completed according to the frequency325

speci�cation by the use of an operator (add event) for adding the event type

" . The operator searches the constraint graph for all the constraints between

" and all the event types of the chronicle under construction in accordance

with the frequency. To avoid the counting phase, the structure of the tree is

changed: it no longer depends on couples of events but of the frequency of the330

time constraints between pairs of events.

4.3. Integration of expert knowledge in chronicle learning

The expert knowledge is important and speci�c information can be inte-

grated into the algorithm HCDAM . Our objective is to capture the expertise

of the operator when he knows something about the behavior of the process. For335

14



this purpose, we allow the user to specifytemporal restrictions for event type

pairs. This knowledge is incorporated inHCDAM as additional input infor-

mation to the algorithm. In [26] an alarm management strategy was proposed

using the HCDAM for chronicle learning. Now in this proposal, an extension

of this algorithm is presented where the expertise knowledge is included. In340

addition, a way for reduce the quantity of possible event sequences to be rec-

ognized by a chronicle is also presented in this section as a contribution to the

chronicle learning theory.

4.3.1. Integration of process knowledge

As was mentioned before, expert knowledge can be represented bytemporal345

restrictions that express a known time constraint between two event type dates.

These temporal restrictions are gathered in an expert databaseDe.

De�nition 5 (Temporal restriction). A temporal restriction for a pair of

event types (ei ; ej ) is a given temporal constraint between their event dates

TRij = ei [t � ; t+ ]ej .350

To integrate this knowledge, Phase 2 ofHCDAM is modi�ed. One �rst

checks the existence of a temporal restrictionTRij for each pair of event types

(ei ; ej ). The temporal restriction then replaces the tree root for this pair of

event types.

The e�ect of the integration of temporal restrictions is to focus the learning355

process and produce less chronicles; it means that the number of chronicles that

are learned for a speci�c situation is reduced using the expertise knowledge.

Example of the "charge oven" activity: the results of the learning process

without the inclusion of temporal restrictions and with the inclusion of temporal

restrictions are given in a simple example of activity consisting of charging an360

oven as represented in Figure. 4. The event types are given byE = f a; b; c; dg,

where a (resp. b) is the detection of the product a (resp. b) entering the oven,

c is the event corresponding to putting the heaters on, andd is the event of
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Figure 4: Example of the "charge oven" activity

Figure 5: Tree roots without temporal restrictions

setting the heaters to high temperature. Three event sequences that express

normal startup of this process are:365

S1 = h(a; 2); (b;4); (a; 5); (c;7); (d;11)i

S2 = h(a; 2); (b;3); (a; 4); (c;7); (d;10)i

S3 = h(a; 2); (b;3); (a; 5); (c;8); (d;11)i

The temporal restrictions that indicate the expertise knowledge areTRab =

a[� 2; 2]b and TRcd = c[2; 6]d.370

The results obtained by HDCAM without the use of temporal restrictions

provide 8 chronicles for a frequency 1. The tree roots are given in Fig. 5. The

8 chroniclesC1 to C8 are given in Fig. 6 and 7.
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Figure 6: Chronicles (1-4) without temporal restrictions

Figure 7: Chronicles (5-8) without temporal restrictions
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Figure 8: Tree roots using temporal restrictions

The results using temporal restrictions in HCDAM provide 4 chronicles,

reducing the number of chronicles by 50%. The tree roots are given in Figure375

8. The 4 chroniclesC1 to C4 are given in Figure 9.

4.3.2. Integration of event information

Another type of expert knowledge that is often available is the occurrence

frequency f (ei ) of a single event type ei . This information is not taken into

account in HDCAM . Nevertheless it can be very useful to reduce the number380

of learned chronicles.

De�nition 6 (Initial event). We de�ne the event � as a virtual initial event

type in all the event sequences ofS such that the occurrence frequencyf (ei ) for

each event typeei in the sequenceSk is determined from � as the frequency of

the pair (� ; ei ).385

The virtual initial event � allows us, without modifying the HDCAM algo-

rithm, to identify the frequency of each event type whereas the original HDCAM

only identi�es the frequency of event type pairs.

Considering the above example, we use the integration of event information

and obtain a unique chronicle, reducing the number of chronicles by 90% (see390

Figure. 10).
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Figure 9: Chronicles using temporal restrictions

Figure 10: Unique chronicle of the Charge oven system
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5. Fault injection framework

This section presents the fault injection framework of the Chronicle Based

Alarm Management (CBAM) which is based on a hybrid causal model and a

qualitative abstraction process of the continuous behavior. The fault injection395

tool is used to generate event sequences for the scenarios to be learned.

5.1. Hybrid Causal Model

The hybrid model representing the plant is based on an extended transition

system, whose discrete states represent the di�erent modes of operation for

which the continuous dynamics are characterized by a causal system. Formally,400

a hybrid causal system is de�ned as a tuple:

� = ( #; D; T r; E; CSD; Init; COMP; DMC ) (8)

Where

� # = f vi g is a set of continuousprocess variableswhich are function of time

t.

� D is a set of discrete variablesD = Q [ K [ VQ .405

{ Q is a set of statesqi of the transition system which represent the

system operation modes.

{ The set of auxiliary discrete variables K = f K i ; i = 1 ; :::ncg repre-

sents the system con�guration in each modeqi , where K i indicates

the discrete state of the active components.410

{ VQ is a set of qualitative variables whose values are obtained from

the behavior of each continuous variablevi .

� E = � [ � c is a �nite set of events 5 noted e, where:

5More precisely, the elements of E are event types but this term is not used in the hybrid

systems literature.
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{ � is the set of events associated to the procedure actions in startup

or shutdown stages.415

{ � c is the set of events associated to the behavior of the continuous

process variables.

Unobservable events form the set �uo .

� T r : Q� � ! Q is the transition function. The transition from mode qi

to mode qj with associated evente is noted (qi ; e; qj ).420

� CSD �
S

i CSDi is the Causal System Description or the causal model

used to represent the constraints underlying the continuous dynamics of

the hybrid system.

Every CSDi associated to a modeqi , is given by a graph (Gc = # [

K; In ). In is the set of inuences where there is an edgeed(vi ; vj ) 2 In425

from vi 2 # to vj 2 # if the variable vi inuences variable vj . A dynamic

continuous modelDMC In K is associated to every inuenceIn K 2 In , see

Figure 11. The model of the active component corresponds to a transfer

function of �rst order with delay.

� Init is the initial condition of the hybrid system.430

� COMP is the set of components.

5.2. Qualitative abstraction of the continuous behavior

In each mode of operation, variables evolve according to the corresponding

dynamics. This evolution is represented with qualitative values. The domain

Do(Vi ) of a qualitative variable Vi 2 VQ is obtained through the function f qual :435

Do(vi ) ! Do(Vi ) that maps the continuous values of variablevi to ranges de�ned

by limit values (High H i and Low L i ).

f (vi )qual =

8
>>>><

>>>>:

V H
i if v i � H i

V M
i if L i < v i < H i

V L
i if v i � L i

(9)
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Figure 11: Dynamic Model of Control DMC

The behavior of these qualitative variables is represented by the automaton

GVi = ( VQ ; � c;  ) illustrated in Figure 12 where VQ is the set of possible qualita-

tive states (V L
i : Low, V M

i : Medium , V H
i : High ) of the continuous variable vi ,440

� c is the �nite set of the events associated to the transitions and : VQ � � c !

VQ is the transition function. The corresponding event generator is de�ned by

the abstraction function f VQ ! �

f VQ ! � : VQ �  (VQ ; � c) ! � c

8Vi 2 VQ ; (V n
i ; V m

i ) !

8
>>>>>>>><

>>>>>>>>:

L (vi ) if V L
i ! V M

i

l (vi ) if V M
i ! V L

i

H (vi ) if V M
i ! V H

i

h(vi ) if V H
i ! V M

i

V n
i ; V m

i 2 f V L
i ; V M

i ; V H
i g

(10)

� c =
S

v i 2 # f L (vi ); l (vi ); H (vi ); h(vi )g (11)
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Figure 12: Behavior of the qualitative variables

5.3. Chronicle database445

A complex process (P r ) is composed ofn 2 N di�erent units or areas P r =

f Ar 1; Ar 2; :::Ar n g where each areaAr m , m = 1 ; :::; n has K 2 N operational

modes (e.g startup, shutdown ..) notedOi , i = 1 ; :::; K . The process behavior in

each operating mode can be either normal or faulty. We de�ne the set of failure

labels � f = f 1; f 2; ::::; f r and the complete set of possible labels is � = N [ � f ,450

here N means normal. To monitor the process and to recognize the di�erent

situations (normal or faulty) of the operational modes, we propose to build a

chronicle base for each area (CAr m ). Then, for a given area Ar m , a learned

chronicle Cm
ij is associated to each couple (Oi ; l j ) where l j 2 �: When l j = l0 =

N , the chronicle is a model of the normal behavior of the considered system,455

otherwise (l j = f i ) the chronicle is a model of the behavior of the system under

the occurrence of the fault f i .

CAr m =

O1

O2

: : :

Ok

N f 1 f 2 : : : f r2

6
6
6
6
6
6
4

Cm
10 Cm

11 Cm
12 : : : Cm

1r

Cm
20 Cm

21 Cm
22 : : : Cm

2r

: : : : : : : : : : : : : : : : : : : : : : : : :

Cm
k0 Cm

k1 Cm
k2j : : : Cm

kr

3

7
7
7
7
7
7
5

(12)

This chronicle database is to be submitted to a chronicle recognition system.

The chronicle recognition system is in charge to identify in an observable ow

of events all the possible matching with the set of chronicles from which the460

situation (normal or faulty) can be assessed.
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Figure 13: Vacuum oven

6. Case study - Vacuum oven

The case study is issued from the Cartagena Re�nery in Colombia. This

re�nery has been recently enriched with news units such as an Hydrostatic Tank

Gauging (HTG), an atmospheric hot tower, a vacuum tower and a vacuum oven465

between other elements. Our proposal aims helping the operator to recognize

normal or dangerous conditions during the startup and shutdown stages of the

re�nery equipped with these new equipments.

Let us �rstly focus on the vacuum oven unit presented Figure 13. Vacuum

is a condition to protect the steel parts and heated metals from the negative470

inuence of the air atmosphere. A vacuum oven is usually an oven in which

vacuum is maintained during the process. The charge of this oven is a mixture

of the reduced oil coming from the section of the hot atmospheric tower and

a recycle produced in the section of the vacuum tower. This furnace has ue

gas temperature indicators at the outlet of the radiation section, as well as at475

the outlet of the ue. The reduced oil ow through the two main coils passes

through temperature sensorsT2 and T3 and then each coil is divided into
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two coils. The operator controls these ows with the valves (V1,V2 ). The

temperature control inside of the oven starts when the fuel gas system valveV3

is opened. The inside temperature of the oven is monitored withT1 and the480

outside temperature of the oil is monitored with T4 . The ows in the system

are monitored by three sensors (F1,F2 and F3).

The standard operating procedure of the re�nery is very constrained and

speci�es the standard procedural actions the operators must execute during the

startup and shutdown stages. The correct execution of the whole operating485

procedure supposes that the operators execute the procedural actions planned

for a normal evolution of the procedure.

Therefore, in case of an abnormal situation, the process evolution due to

the procedural actions executed by operators and so the continuous variable

evolutions are no more consistent with the standard operating procedure. This490

section shows how abnormal situations can be captured into chronicles built

according the proposed Chronicle Based Alarm Management (CBAM ) method.

The so built chronicle base could be then considered by a recognition system to

recognize the normal or faulty situations when they occur.

The CBAM method relies on several steps (see section 3) leading to the495

construction of a chronicle base. Next sections, detail each of these steps.

6.1. Hybrid features of the vacuum oven

The vacuum oven process is composed of passive components, active compo-

nents and sensors. Passive components are components whose operational state

cannot be modi�ed via an external action (e.g. the oven structure (Ov)) unlike500

active components whose states can be changed by a procedural action (e.g.

the three valves (V1, V2, and V3 ) that can be switched from opened to closed

and closed to opened). The sensors, correspond to the instrumentation that

measures the continuous variables e.g. ow sensors and temperature sensors.

Since there are three active components, the vacuum oven system obviously in-505

volves hybrid behavior. Modeling the behavior of this hybrid system involves a

set of continuous variables and a set of discrete variables (see section 5.1). The
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continuous variables are the temperature (T1, T2, T3 and T4) and the ows

(F1, F2, and F3) (see Figure 13).

The discrete variables are:510

� the states of the transition system representing the system operating

modes. The vacuum oven has thus 23 = 8 con�gurations and operat-

ing modes denotedq0 to q7 due to the three valves (V1, V2, and V3 )

each with two possible modes (opened and closed).

� VQ the set of qualitative variables values are obtained from the behavior of515

continuous variables as explained Section 5.2. In this case study, contin-

uous variable domain partitioning has been chosen according to expertise

knowledge and to limit values speci�ed in standard operating procedures.

VQ = f
S 3

i =1 f F i L ; F i M ; F i H gg [ f
S 4

i =1 f T iL ; T iM ; T iH gg.

� the set of auxiliary discrete variables indicating the state of active com-520

ponents is given by: K = f K i ; i = 0 ; :::7g i.e the system con�guration

associated to an operating mode. The con�guration is de�ned by the

state (opened or closed) of the three valves. For a normal startup the

vacuum oven evolves through the modesq0,q3,q5,q6 and q7. In the mode

q0 the three valves are closed and thenK0 = 0. When the two �rst valves525

are closed and the valveV3 is opened, the system in the modeq3 and

K3 = 3. In q5, V3 and V1 are opened andV2 is closed thenK5 = 2. For

q7 all the valves are opened andK7 = 7.

The discrete part of the model is given by the underlying DES (Discrete

Event System). This model is obtained from the operating speci�cations de-530

scribed in the standard operating procedures. To each operation modeqi is

associated a Causal System Description (CSDi ) to identify the inuences be-

tween the continuous variablesF 1, F 2, F 3, T1, T2, T3 and T4. For the vacuum

oven, the underlying DES is shown Figure 14 on the left. Green arrows indi-

cate the system evolutions during a startup stage. TheCSDs associated to the535

operating modes (i.eq0; q3; q5; q6 and q7) involved in a startup stage are shown
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Figure 14 on the right. In each CSD, the edges are labeled by the inuences

between the variables. These inuences are de�ned by the con�guration of the

valves. For instance the inuence betweenF 3 and T1 depends on the con�gu-

ration of the valve V3 noted K(V3 ). A bold edge indicates that the inuence540

is active.

6.2. Event type identi�cation

The set of event typesE considered into the chronicles is de�ned byE =

� [ � c and corresponds to the set of event types of the vacuum oven hybrid

system. The set of event types associated to procedural actions concern mainly545

the valves of the oven: � = f V1; V2; V3; v1; v2; v3; M 2Ag, where V1 (resp.

V2; V3) denotes the switch of the valveV1 (resp. V2 ,V3 ) from closed to

opened. v1 (resp. v2; v3) the switch of the valve V1 (resp. V2 ,V3 ) from

opened to closed. The eventM 2A corresponds to the change frommanual to

automatic operating, closing the control loops. In the reminder we assume that550

this event is the only unobservable:M 2A 2 � uo and � o = f V1,V2,V3,v1,v2,v3g.

The set of event types associated to the behavior of the continuous variables

is de�ned by the abstraction function (see Section 5.2).

� c =

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

L (F 1) ; l (F 1) ; H (F 1) ; h(F 1) ;

L (F 2) ; l (F 2) ; H (F 2) ; h(F 2) ;

L (F 3) ; l (F 3) ; H (F 3) ; h(F 3) ;

L (T 1) ; l (T 1) ; H (T 1) ; h(T 1) ;

L (T 2) ; l (T 2) ; H (T 2) ; h(T 2) ;

L (T 3) ; l (T 3) ; H (T 3) ; h(T 3) ;

L (T 4) ; l (T 4) ; H (T 4) ; h(T 4)

(13)

The occurrence of the event types �c depends on the inuence between the

continuous variables. These inuences are captured in each causal system de-555

scription associated to each operation mode (See Figure 14 on the right).
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Figure 14: Startup stage of the vacuum oven: underlying DES and Causal System Description

6.3. Event sequence generation

The event sequences used as input for the chronicle learning stage are gen-

erated according to the behavior of the system in a given scenario. In this case

study, only a normal scenario is considered.560

For the startup stage, the initial conditions are that the oven is empty and

the valves V1 , V2 and V3 are closed. In this situation, the values for all the

continuous variables are below their low limits (F 1, F 2, F 3, T1, T2, T3, T4

). Then according to the standard procedure description, the scenario starts

with the opening of the valve V3 that is to say the occurrence of an event565

of type V3. After this event type occurrence, the system is in the mode of

operation q3 where only the valvesV1 and V2 are closed. The variableT1

increases and an event of typeL T 1 must occur indicating that the internal oven

temperature has passed the low limit. Then the ow of the fuel gas reaches

its low limit and an event of type L F 3 occurs. So, the ordered sequence of570

event types that has occurred isV3; L T 1; L F 3. Passing the low limit of F 3 is

the condition for continuing the procedure by the opening action of the valve

V1 (i.e occurrence of an event of typeV1). When the operator opens the

valve V1 , the system evolves to the mode of operationq5 where the internal

ow in the vacuum oven starts. In this state, the ow F 1 and the outow575
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temperature T4 increase (event of typeL T 4 followed by an event of typeL F 1).

The next event that occurs is of type HF 1 indicating that the ow F 1 has

passed its high level. At this stage, the ordered sequence of event types is

given by: V3; L T 1; L F 3; V1; L T 4; L F 1; HF 1. The next procedural action is the

closing of the valve V1 (occurrence of an event of typev1) followed by the580

opening of the valve V2 (V2). Then, the high limit of the temperature T1

is reached and an event of typeHT 1 occurs. The ow F 1 decreases from its

high limit (event type hF 1). An event of type L F 2 occurs because the ow

from V2 increases. The high limit in the temperature T4 induced an event of

type (HT 4). Following up with the procedure, due to the high limit of F 2 an585

event of type HF 2 occurs. At this instant, the ordered sequence of event types

is V3co; L T 1; L F 3; V1, L T 4; L F 1; HF 1; v1; V2; HT 1; hF 1; L F 2,HT 4; HF 2. In this

situation, an unobservable event of typeM 2A occurs and the control loops are

closed, carrying the system to a steady state. Note that in this study, we assume

that the control loops are closed immediately after an event of typeHF 2. Then,590

F 1, T1 andT4 decrease (eventslF 1, hT 1 and hT 4). Finally, the sequence ends by

and event of type hF 2 and by the opening of the valveV1 so that the last event

that occurs in this normal startup is of type L F 1. The �nal ordered sequence

that must occur in this scenario is V3; L (T 1) ; L (F 3) ; V1; L (T 4) ; L (F 1) ; H (F 1) ; v1,

V2; H (T 1) ; h(F 1) ; L (F 2) ; H (T 4) ; H (F 2) ; l (F 1) ,h(T 1) ; h(F 2) ; V1; L (F 1) .595

By simulation three di�erent event sequences (S1, S2 and S3) have been

obtained all of them associated with the same scenario i.e a normal startup of

the vacuum oven. These sequences di�er only from the event occurrence dates:

� S1 = h(V3; 1); (L (T 1) ; 3); (L (F 3) ; 5); (V1; 6); (L (T 4) ; 7); (L (F 1) ; 8); (H (F 1) ; 12);

(v1; 13); (V2; 14); (H (T 1) ; 15); (h(F 1) ; 16); (L (F 2) ; 17); (H (T 4) ; 19); (H (F 2) ; 22);600

(l (F 1) ; 24); (h(T 1) ; 25); (h(T 4) ; 26); (h(F 2) ; 27); (V1; 42); (L (F 1) ; 45)i

� S2 = h(V3; 1); (L (T 1) ; 7)(L (F 3) ; 13); (V1; 18); (L (T 4) ; 21); (L (F 1) ; 24); (H (F 1) ; 32);

(v1; 35); (V2; 37); (H (T 1) ; 40); (h(F 1) ; 45); (L (F 2) ; 48); (H (T 4) ; 54); (H (F 2) ; 61);

(l (F 1) ; 65); (h(T 1) ; 68); (h(T 4) ; 72); (h(F 2) ; 76)

(V1; 96); (L (F 1) ; 101)i605
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Figure 15: Simulation of a normal startup

� S3 = h(V3; 2); (L (T 1) ; 6); (L (F 3) ; 9); (V1; 12); (L (T 4) ; 14); (L (F 1) ; 16)

(H (F 1) ; 22); (v1; 24); (V2; 25); (H (T 1) ; 27); (h(F 1) ; 30); (L (F 2) ; 32)

(H (T 4) ; 36); (H (F 2) ; 41); (l (F 1) ; 43); (h(T 1) ; 45); (h(T 4) ; 48); (h(F 2) ; 50)

(V1; 68); (L (F 1) ; 71)i

Figure 15 shows one simulation of the scenario leading to the generation of610

the sequenceS1. The values of the ow variables are normalized between 0 and

1 and for temperature, the value of 0 corresponds to the ambient temperature.

The time unit is in second.

6.4. Construction of the chronicle database

The vacuum oven is associated to the areaAr 2. The learning algorithm615

learns one unique chronicleC2
10 for a normal startup as shown in Figure 16.

During the learning stage expert knowledge as been integrated through three

temporal restrictions: TR(V 3;LF 3) = V3[6,8]L (F 3) , TR(V 1;LF 1) = V1[-76,82]L (F 1) ,

TR(LF 2;V 2)) = L (F 2) [2,8]V2. This information is reported on the corresponding

edges of the chronicle graph on Figure 16. While the temporal restrictions620

coming from expertise do not save much e�ort for building the constraint data

base, it is important to notice that they achieve to cut down the number of

chronicles to one.

The three input sequencesS1,S2 and S3 used for the learning stage constitute

three possible instances of the chronicleC2
10. However, the chronicle has an625
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interesting generalization power and it de�nes partial orders on the occurrence

of event types, which results in a graph.

7. Conclusion and future work

This paper addresses the problem of alarm management based on chroni-

cles recognition. The process situations are modeled by chronicles. Chronicles630

are obtained via a chronicle learning algorithm working on multiple input se-

quences and integrating expert knowledge if available. The method designed for

hybrid systems relies on a theoretical framework in which hybrid features are

captured. The event types of the chronicles are de�ned from an abstraction of

the continuous behavior.635

The paper provides experimental results from a petrochemical process real

case study, a vacuum oven. This kind of processes is well-suited to chronicle

based supervision. Indeed, the temporal sequences corresponding to start up

and shut down are of reasonable size in terms of number of events. This is

important because the HDCAM algorithm is exponentially dependent on the640

number of events in the input sequences. Like for the algorithms of [37] or [36],

this is the price to pay for a complete chronicle discovery algorithm. HDCAM

returns discovered chronicles in highest frequency order, so the user can stop the

discovery at anytime. The user can also specify a particular frequency range.

This paper also provides some ideas to mitigate this issue by integrating expert645

knowledge (Section 4.3).

One interesting problem that we are planning to address is to extend the

chronicle learning algorithm by integrating notably negative examples and for-

getting capabilities. Another research perspective is to consider Hazard and

Operability studies or event tree analysis for the scenarios determination and650

the event types identi�cation. Finally, another issue is the exploitation of the

chronicles recognition as asuper-alarm generator providing to the operators rel-

evant information about the process situation, increasing the reliability of this

layer of protection.
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Figure 16: Vacuum oven: chronicle of the normal startup, C2
10
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