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ABSTRACT  

In this article, we apply the coupled-mode theory to vertically-coupled micro-disk resonators presenting an asymmetric 
distribution of refractive index and a multilayer separation region between the two waveguide cores, resulting in an 
effective propagation constant phase-mismatch in the coupling region. We introduce a criterion which, given the coupler 
overall permittivity distribution, clarifies how to best choose the individual decomposition index profiles among the 
various possible solutions. Following our recent experimental demonstration we subsequently exploit the derived 
decomposition to evaluate the theoretical transmission characteristics of an AlGaAs/AlOx-based structure as function of 
wavelength and as function of the position of the resonator relative to the access waveguide.We show that the resonant 
dips of the intensity transmission, spaced by the cavity FSR, are modulated by an envelop which governs the coupling 
regime of the resonator-waveguide system. 
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1. INTRODUCTION  
Over the last two decades, integrated whispering-gallery-mode resonators have been increasingly used as the basic 
building blocks for selective filters, high-sensitivity sensors, nonlinear converters, or even as low-threshold lasers1–3. 
Irrespective of the application, the performance of these integrated micro-resonators is generally governed by the 
evanescent coupling of the light between its constitutive cavity and access waveguides, and their usefulness relies on the 
ability to obtain high-quality factors. To do so, it is necessary to achieve the critical coupling condition where the system 
transfer function drops to zero due to destructive interference between the input waveguide incident field and the 
outcoupled resonator field4. It is therefore of crucial importance to be able to assess the dependence of the coupler 
characteristics based on the chosen structural layout. The coupled-mode theory, which derives the response of a full 
coupler from the linear superposition of a number of constitutive decomposition fields, has been shown to be one of the 
most efficient methods to describe this coupling interaction for devices with simple and often symmetric refractive index 
distributions5–7. 
Here, following our recent experimental demonstration, we extend the coupled-mode analysis to vertically-coupled 
micro-disk resonators presenting not only an asymmetric distribution of refractive index but also a multilayer separation 
region between the two waveguide cores, generally resulting in mismatched propagation constants in the coupling 
region. In doing so, we introduce a criterion which, given the coupler overall permittivity distribution, clarifies how to 
best choose the individual decomposition index profiles among the various possible solutions. We subsequently exploit 
the derived decomposition to evaluate the theoretical transmission characteristics of an AlGaAs/AlOx-based structure as 
function of wavelength and as function of the position of the resonator relative to the access waveguide. We show that 
the resonant dips of the intensity transmission, spaced by the cavity FSR, are modulated by an envelop that governs the 
coupling regime of the resonator-waveguide system. The control of this envelop’s shape relies on the coupler 
characteristics and offers various possibilities in the design of critically-coupled devices. 
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2. INTRODUCTION TO COUPLED MODES THEORY 
The coupled-mode theory (CMT) assumes that the total field (𝑬�(𝑥,𝑦, 𝑧),𝑯�(𝑥,𝑦, 𝑧))for the complete structure can be 
linearly decomposed over the eigen-mode basis of each constituting waveguide of the structure5, 8. Each of the eigen-
modes 𝐄�𝑚(𝑥,𝑦, 𝑧) of these waveguides (consisting of the lateral mode profiles 𝐄𝑚(𝑥,𝑦)multiplied by the appropriate z 
exponential dependence) is modulated by an amplitude function 𝐴𝑚(𝑧) that evolves with the propagation coordinate z.  
 

�𝑬
�(𝑥,𝑦, 𝑧) = ∑ 𝐴𝑚(𝑧)𝑬�𝑚(𝑥,𝑦, 𝑧)𝑚

𝑯�(𝑥,𝑦, 𝑧) = ∑ 𝐴𝑚(𝑧)𝑯�𝑚(𝑥,𝑦, 𝑧)𝑚
 (1) 

 
 

Where �𝑬
�𝑚(𝑥,𝑦, 𝑧) = 𝑬𝑚(𝑥,𝑦)𝑒−𝑖𝛽𝑚𝑧

𝑯�𝑚(𝑥,𝑦, 𝑧) = 𝑯𝑚(𝑥,𝑦)𝑒−𝑖𝛽𝑚𝑧    (2) 

 
There are several ways to establish the evolution equation for the amplitudes 𝐴𝑚(𝑧) among which figure the variational 
method9 or the Lorentz reciprocity theorem5,8,9. The underlying principle is that, once power-normalized, the overall 
field decomposition (1) is adequately combined with one of the basis electromagnetic field 𝐄𝑘(𝑥,𝑦, 𝑧),𝐇𝑘(𝑥,𝑦, 𝑧) and 
integrated over the whole transverse section to obtain the evolution equation for the amplitudes A𝑚(𝑧) :  
 
∑ 𝑑𝐴𝑚

𝑑𝑑 ∬𝒆𝑧 . �𝑬�𝑚 × 𝑯�𝑘∗ +  𝑬�𝑘∗ × 𝑯�𝑚�𝑑𝑑𝑑𝑑 =𝑚 − 𝑖𝑖𝜀0 ∑ 𝐴𝑚∬(𝜀 − 𝜀𝑚)𝑚 𝑬�𝑚 ∙ 𝑬�𝑘∗𝑑𝑑𝑑𝑑    (3) 
 
Where 4𝑃𝑚 = ∬𝒆𝑧 . (𝑬𝑚 × 𝑯𝑚

∗  +  𝑬𝑚∗ × 𝑯𝑚)𝑑𝑑𝑑𝑑 = 1  represents the normalized optical power carried by eigen-
mode m. 
 
κ𝑘𝑘 = 𝜔𝜀0∬(𝜀 − 𝜀𝑚)𝑬𝑚 ∙ 𝑬𝑘∗𝑑𝑑𝑑𝑑 represent the first-order evanescent coupling coefficients from waveguide m to 
waveguide k. This parameter quantifies how efficiently the power transfers between the two parallel waveguides 
 
𝑐𝑘𝑘 = ∬𝒆𝑧 . (𝑬𝑚 × 𝑯𝑘

∗  +  𝑬𝑘∗ × 𝑯𝑚)𝑑𝑑𝑑𝑑 is the butt-coupling coefficient or cross-power matrix-element. It represents 
the excitation efficiency from a field propagating into a waveguide with an eigen-modes basis {𝑬𝑚(𝑥,𝑦)} to a field 
propagating into a waveguide with an eigen-modes basis {𝑬𝑘(𝑥,𝑦)}. 
 
κ𝑚𝑚 = 𝜔𝜀0∬(𝜀 − 𝜀𝑚)𝑬𝑚 ∙ 𝑬𝑚∗ 𝑑𝑑𝑑𝑑 represent the second-order evanescent coupling coefficients or self-coupling of 
waveguide (or mode) m to itself.  

3. COUPLER PERMITTIVITY DECOMPOSITION 
Given the coupler overall permittivity distribution, one has to define the individual decomposition index profiles in order 
to build the total field solution (1). 
Picking one decomposition over another is not necessarily straightforward, especially for couplers with a multilayer 
asymmetric permittivity profile. Moreover the reasons for this choice are often eluded in the relevant litterature5,8,10. It is 
however important to carefully consider the choice of these individual index profiles, as it results in the definition of the 
constitutive waveguides that support the eigen-mode basis used to build the aforementioned linear decomposition of the 
total optical field in the full coupler structure. In the derivation of the first order evanescent coupling coefficient κ𝑘𝑘, the 
difference  ∆𝜀𝑚 = 𝜀 − 𝜀𝑚  between the coupler overall permittivity distribution 𝜀 and the individual permittivity 
decomposition 𝜀𝑚  represents a refractive index perturbation to guide m. This perturbation is induced by the presence of 
a reference waveguide k that exchanges power from waveguide m with a guided mode of waveguide k. Hence, the 
meaning of κ𝑘𝑘 = 𝜔𝜀0∬(𝜀 − 𝜀𝑚)𝑬𝑚 ∙ 𝑬𝑘∗𝑑𝑑𝑑𝑑: the power transfer from guiding element m to guiding element k. 
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Figure 1. Cross section diagram of the waveguide-resonator coupling region 

 
The structure under investigation is the one we recently demonstrated11 and its vertical index profile in the coupling 
region is depicted in figure 1. 
Our criterion to select the permittivity decomposition applies to coupler structures with piece-wise constant overall 
permittivity distributions 𝜀, as represented in figure 2. 
It consists in picking individual permittivity distributions 𝜀𝑚 such that, on each piece of the distribution, the value of the 
difference ∆𝜀𝑚 = 𝜀 − 𝜀𝑚 is either zero or positive and as small as possible, in order to best fit the perturbative nature of 
the CMT. Moreover, we choose 𝜀𝑚 such that the permittivity perturbation value ∆𝜀𝑚 is minimized, positive and non-
zero only in the region of the core of waveguide k, and zero everywhere else.  
This choice restricts the integration domain to the latter region and allows better understanding of the meaning of κ𝑘𝑘, 
that is, the evanescent field overlap leading to a guided power transfer from waveguide m to the core of waveguide k.  
The constitutive waveguides defined that way best reproduce the total structure of the coupler and, as a matter of fact, 
lead to more accurate linear decompositions of the total field. 
 
Due to the simplicity of deriving their eigen-modes, 3-layer slab-like individual permittivity decompositions 𝜀𝑚 are often 
proposed as equally efficient alternatives to multilayer (more than 3 layers) decompositions in the relevant 
litterature5,8,10. They however have an important drawback when it comes to decomposing copulers with asymmetric 
multilayer permittivity distributions 𝜀. Indeed, in this case, the ∆𝜀𝑚 values are no longer piece-wise minimized as they 
can become positive (resp. negative) in regions outside of the core of waveguide k, as shown in figure 2. This is 
considered as an artefact in the integration domain of the mode overlap coupling coefficients that unduly increases (resp. 
lowers) their value. Moreover, as the wavelength increases the effective indices of these individual 3-layer waveguides 
increasingly differ from those of the supermodes of the complete structure supported by 𝜀. 
Our permittivity decomposition choice criterion permits to avoid the drawbacks of the latter artefact at the price of a 
“multilayer” decomposition, whose eigen-modes are slightly more complex to derive, but is better-suited as more  
perturbative. 
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Figure 2. Representation of the resonator-waveguide (resp. (1) and (2) ) permittivity distribution in the coupling region. (a) 
commonly-used 3-layer individual permittivity decomposition of waveguide (2) leading to negative-perturbation zones. (b) 
multi-layer permittivity decomposition of waveguide (2), following our aforementioned criterion. 

 

Figure 3 displays the reduced form of the mode overlap coupling coefficients yielded by the individual 
permittivity decompositions described in fig. 2. It highlights the importance of the permittivity decomposition 
criterion. Indeed, Panel (a) demonstrates that the 3-layer decomposition is in fact inadequate for the following 
two reasons: first, the coefficient κ𝑎changes sign at a wavelength close to 1250 nm, whilst κ𝑏remains positive. 
and the the values of the second-order self-coupling coefficients α𝑎,𝑏are greater than the first order mutual-
coupling coefficients κa,b, which is incoherent with standard CMT predictions. Panel (b) also shows that multi-
layer permittivity decompositions described in fig. 2.b, which follows our selection criterion, does not exhibit 
the above-mentioned pitfalls. 
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Figure 3. Evolution of the reduced form of the mode overlap coupling coefficients as function of wavelength yielded by (a) 
commonly-used 3-layer individual permittivity decompositions as described in fig. 2.a. (b) multi-layer permittivity 
decompositions as described in fig. 2.b. 

 

4. COUPLED-MODE MODEL OF THE STRUCTURE 
 
It has been shown that monomode vertical coupling between a WGM resonator and its access waveguide can be accurately 
modeled as coupling between two parallel slab waveguides using standard CMT6,7. In this approximation, the interaction 
length L of the defined 1-D slab-like coupler is set up by the length of the overlap between the waveguide and the resonator 
and can be adjusted by changing their lateral alignment X0 as shown in figure 4. This approximation holds as long as the 
position of the center of the access waveguide is above the radius Rc of the internal caustic of the disk mode. The coupling 
length L has a geometrical dependence on the disk radius R, the access-waveguide width W and the lateral offset  x0 : 
L = 2�(W − x0)(2R + x0 − W) 
 

 

Figure 4. Top view schematic of the waveguide-resonator overlap in the coupling region. Changing the lateral offset 
 𝑥0permits to adjust the coupling interaction length L. 
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Applying the evolution equation (3) to the case of a vertically monomode access waveguide and resonator (i.e. 2 modes 
in the entire structure) results in a coupled system of two first-order differential equations :  

�
𝑑𝐴1
𝑑𝑑

= −𝑖κ𝑎𝐴2𝑒−𝑖2𝛿𝛿 + 𝑖α𝑎𝐴1
𝑑𝐴2
𝑑𝑑

= −𝑖κ𝑏𝐴1𝑒𝑖2𝛿𝛿 + 𝑖α𝑏𝐴2
     (4) 

 

Where δ = β2−β1
2

 is the propagation constant mismatch and κa = κ12−c12κ22
1−|c12|2

, κb = κ21−c12
∗ κ11

1−|c12|2
, αa = κ12c12−κ11

1−|c12|2
, αb =

κ12c12
∗ −κ22

1−|c12|2
 are the reduced form of the mode-overlap coupling coefficients12. 

After some algebra, the amplitudes of the optical fields at the input/output ports of the coupler are related by the CMT 
coupling matrix12 :  

�𝐴1(𝐿)
𝐴2(𝐿)� = 𝑀𝐶𝐶𝐶 �

𝐴1(0)
𝐴2(0)�              (5) 

𝑀𝐶𝐶𝐶 = �
[cos(Г𝐿) + 𝑗 𝛿

�

Г
sin (Г𝐿)]𝑒−𝑗(𝛿�−𝛼𝑎)𝐿 −𝑗 𝑘𝑎

Г
sin (Г𝐿)𝑒−𝑗(𝛿�−𝛼𝑎)𝐿

−𝑗 𝑘𝑏
Г

sin (Г𝐿)𝑒𝑗(𝛿�+𝛼𝑏)𝐿 [cos(Г𝐿) − 𝑗 𝛿
�

Г
sin (Г𝐿)]𝑒𝑗(𝛿�+𝛼𝑏)𝐿

�                (6) 

Where 𝛿̂ =  𝛿 + 𝛼𝑎−𝛼𝑏
2

  and Г = �κ𝑎κ𝑏 + 𝛿̂2 

Butt-coupling and self-coupling coefficients are usually neglected in standard analysis6, when the propagation constants 
of the two waveguides are matched (𝛿 = 0) or very similar (𝛿 ≈ 0) or when the two waveguides are operating in the 
weak coupling regime (i.e. are sufficiently separated from each other (𝑐12 ≅ 0)12). However, when two waveguides 
with mismatched propagation constants are placed close together (strong coupling regime), 𝑐𝑘𝑘  and κ𝑚𝑚  must be taken 
into account. Moreover, when the coupling interaction is not adiabatically set up, butt-coupling coefficient cannot be 
neglected either. That is typically the case of vertical coupling, where the two waveguides “see” an abrupt transverse 
refractive index perturbation build-up along the propagation axis, when entering the transition zone of the coupling 
region. 

The feedback established by the propagation along the whispering-gallery-mode resonator with intrinsic loss rate 𝜌
2
 

imposes the following relationship between the resonator amplitude fields 𝐴2(0) and 𝐴2(𝐿) : 

𝐴2(0) = 𝐴2(𝐿)𝑒−𝑖𝛽𝑅(𝐿𝑅−𝐿)−𝜌2𝐿𝑅 = 𝐴2(𝐿)𝑒𝑖𝑖𝛼                     (7) 

Where 𝛼 = 𝑒−
𝜌
2𝐿𝑅  ,the inner cicrulation factor, represents the internal losses.  
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Figure 5. Sketch of the two-port codirectional coupler model 

 

 

Plugging this condition into the system of equations (5)-(6) yields an expression of the transmitted intensity of the 
optical field through the waveguide after coupling to the resonator :          

𝑇(𝜑) = �𝐴1(𝑧)
𝐴1(0)

�
2

= |t|2+𝛼2−2𝛼|t|cos (𝛽𝑅(𝐿𝑅−𝐿)+𝜙𝑡)
1+|t|2𝛼2−2𝛼|t|cos (𝛽𝑅(𝐿𝑅−𝐿)+𝜙𝑡)

            (8) 

Where t = cos(Г𝐿) + 𝑗 𝛿
�

Г
sin (Г𝐿)= |t|𝑒−𝑖𝜑𝑡  is the transmission coefficient of the codirectional coupler and 𝜑 =  𝛽𝑅(𝐿𝑅 −

𝐿) + 𝜙𝑡 is the total phase-shift over one round trip in the resonator, with 𝜙𝑡 = 𝜑𝑡 − �𝛿̂ + 𝛼𝑏�𝐿 + 𝛽𝑅𝐿  being the 
complete-CMT phase-shift introduced by the coupler.  

At resonance, the transfer function T reaches its minimum and 
 𝜑 = 𝛽𝑅(𝐿𝑅 − 𝐿) + 𝜙𝑡 =  2𝑚𝑚                (9) 
 
Equation (8) can be rewritten in the form of a Lorentzian dip by performing a series expansion in the vicinity of a 
resonance 𝜑0 when the total phase shift 𝜑 = 2𝑚𝑚 (𝑚 ∈ 𝒁 ), which leads to the expression of the Q factor of the cavity :  

𝑄 = �𝛼|t|(𝛽𝑅(𝐿𝑅−𝐿)+𝜙𝑡)
2(1−𝛼|t|)

                          (10) 

The resonance condition (8) defines a set of dips and peaks spectrally separated by the cavity FSR and modulated by an 
envelop whose expressions is : 

 
𝑇𝑟𝑟𝑟− = |t|2+𝛼2−2𝛼|t|

1+|t|2𝛼2−2𝛼|t|
= (𝛼−|t|)2

(1−𝛼|t|)2
                        (11) 

 
The critical coupling condition is achieved when the internal losses 𝛼 in the resonator are equal to the coupling losses |t|. 
Then the transmitted power (11) drops to zero due to perfect destructive interference in the outgoing waveguide between 
the non-coupled transmitted field and the internal cavity field coupled to the output waveguide4 as will be shown in 
figure 7.  
 
 

5. COUPLED-MODE ANALYSIS OF THE STRUCTURE 
 
In this section, we investigate the coupled microdisk characteristics of the recently-reported and above-described 
vertically-coupled structure11. The microdisk diameter is taken to be 300 µm and the coupler length is varied to simulate 
various guide-to-resonator offsets.  
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The reduced form of the mode overlap coupling coeffcients κa,band α𝑎,𝑏 , shown in figure 3, supported by the complete 
set of mode overlap coupling coefficients κ12, κ21, 𝑐12, κ11,  κ22 , were evaluated by numerical integration of the eigen-
mode profiles overlap along the vertical axis. The mode profiles and effective indices were obtained (with a homemade 
script) by solving an interface problem given the constitutive permittivity decompositions and the continuity conditions 
for the tangential components of the electromagnetic field.  
The resonator loss were assumed to be soly due to surface scattering due to roughness imperfections of the cavity walls, 
since the bending losses are negligible for large radii WGMs. The surface scattering quality factor Qss for TE modes of 
the disk can be approximed by the Volume Current Method which yields an analytic expression13 that depends on the 
effective indices, as well as geometrical and roughness parameters. We implemented it with a rms roughness σr = 3 nm 
and a roughness coherence length of  lcr = 100 nm in order to compute the scattering loss rate 𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2𝜋𝑛𝑒𝑒𝑒

𝜆𝑄𝑠𝑠
  (𝑐𝑐−1) 

shown in figure 6. 

 
Figure 6. Evolution of the disk resonator and access waveguide effective propagation constants (resp. blue and red curve) and 
resonator scattering losses (black curve) with wavelength 

 

We subsequently exploit the derived mode-overlap coefficients and loss rate as basic building blocks of the transfer 
function (11) to evaluate the theoretical transmission characteristics of the coupled resonator as function of wavelength 
and as function of the coupling length L. 
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Figure 7. Transmission envelop Tres−of the vertically coupled structure as a function of wavelength and coupling length  

 

As shown in figure 7, the cross-section of  the transmission 𝑇𝑟𝑟𝑟− at 𝜆 = 1550 𝑛𝑚 displays a number of coupling length values 

where critical coupling occurs, i.e. 𝑇𝑟𝑟𝑟− = 0 and 𝑄 =  𝑄𝑐 = 𝑄𝑖𝑖𝑖
2

 , with 𝑄𝑖𝑖𝑖 = √𝛼(𝛽𝑅(𝐿𝑅−𝐿)+𝜙𝑡)

2(1−𝛼)
  the intrinsic quality factor 

corresponding to an uncoupled resonator (i.e. |𝑡| = 1 ). Each of these critical coupling lengths yields different transmission shapes 
and bandwidths. 
 

 
Figure 8. (a) Cross-section of  the transmission Tres−at λ = 1550 nm. (b) Representation Tres− as a function of wavelength for each 

of the critical coupling lengths of panel (a) 
 
For instance, panel (b) of figure 8 shows a narrow band transmission corresponding to Lc = 81µm, whereas panel (a) shows a 
broadband transmission for Lc = 36 µm. The broadest transmission bands correspond to the largest 𝑄 ≈ 𝑄𝑐  zones.  
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Figure 9 shows that the Q-factor goes from under (𝑄 >  𝑄𝑐) to over-coupling (𝑄 <  𝑄𝑐) regime. This because of the periodic 
exchange of power in the coupler. This typically happens in a vertical-coupling setup due to the increased length of the interaction 
region. 

 

 Figure 9. Representation of Q-factor and Tres− as a function of wavelength for (a) the second critical coupling length at 1550 nm. (b) 
the fifth critical coupling length at 1550 nm 

 
 
 

6. CONCLUSIONS 
We applied coupled-mode analysis to vertically-coupled micro-disk resonators presenting an asymmetric distribution of refractive 
index and a multilayer separation region between the two waveguide cores. In doing so, a criterion was introduced, which clarifies 
how to best choose the individual decomposition index profiles. We subsequently exploited the derived decomposition to evaluate the 
theoretical transmission characteristics of an AlGaAs/AlOx-based structure and showed that this latter is modulated by an envelop 
that governs the coupling regime of the resonator-waveguide system. It is then possible to optimize the tansmission bandwidth by 
adequately designing the structure of the coupler. Future work will focus on extending our analysis to phase-matched waveguides in 
order to explore other possibilites in the design of critically-coupled devices. 
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