O. Lindvall and Z. Kokaia, Neurogenesis following Stroke Affecting the Adult Brain, Cold Spring Harbor Perspectives in Biology, vol.7, issue.11, p.19034, 2015.
DOI : 10.1101/cshperspect.a019034

T. Murphy and D. Corbett, Plasticity during stroke recovery: from synapse to behaviour, Nature Reviews Neuroscience, vol.23, issue.12, pp.861-872, 2009.
DOI : 10.1161/01.STR.24.6.889

K. Jin, X. Wang, L. Xie, X. Mao, W. Zhu et al., Evidence for stroke-induced neurogenesis in the human brain, Proceedings of the National Academy of Sciences, vol.33, issue.11, pp.13198-13202, 2006.
DOI : 10.1161/01.STR.0000034399.95249.59

D. Hermann and M. Chopp, Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation, The Lancet Neurology, vol.11, issue.4, pp.369-380, 2012.
DOI : 10.1016/S1474-4422(12)70039-X

C. Grefkes and G. Fink, Connectivity-based approaches in stroke and recovery of function, The Lancet Neurology, vol.13, issue.2, pp.206-216, 2014.
DOI : 10.1016/S1474-4422(13)70264-3

H. Liu, T. Tian, W. Qin, K. Li, and C. Yu, Contrasting Evolutionary Patterns of Functional Connectivity in Sensorimotor and Cognitive Regions after Stroke, Frontiers in Behavioral Neuroscience, vol.45, p.72, 2016.
DOI : 10.1161/strokeaha.113.003425

C. Alia, C. Spalletti, S. Lai, A. Panarese, S. Micera et al., Reducing GABAA-mediated inhibition improves forelimb motor function after focal cortical stroke in mice, Scientific Reports, vol.31, issue.1, p.37823, 2016.
DOI : 10.1523/JNEUROSCI.2617-11.2011

URL : http://www.nature.com/articles/srep37823.pdf

F. Chollet, J. Tardy, and J. Albucher, Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial, The Lancet Neurology, vol.10, issue.2, pp.123-130, 2011.
DOI : 10.1016/S1474-4422(10)70314-8

A. Arvidsson, T. Collin, D. Kirik, Z. Kokaia, and O. Lindvall, Neuronal replacement from endogenous precursors in the adult brain after stroke, Nature Medicine, vol.8, issue.9, pp.963-970, 2002.
DOI : 10.1006/exnr.1995.1085

V. Muñetón-gómez, E. Doncel-pérez, A. Fernandez, J. Serrano, A. Pozo-rodrigálvarez et al., Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations. Front Cell Neurosci, 2012.

L. Vaysse, F. Conchou, B. Demain, C. Davoust, B. Plas et al., Strength and fine dexterity recovery profiles after a primary motor cortex insult and effect of a neuronal cell graft., Behavioral Neuroscience, vol.129, issue.4, pp.423-434, 2015.
DOI : 10.1037/bne0000067

J. Yamane, M. Nakamura, and A. Iwanami, Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets, Journal of Neuroscience Research, vol.208, pp.1481-89, 2010.
DOI : 10.2302/kjm.51.115

G. Steinberg, D. Kondziolka, and L. Wechsler, Clinical Outcomes of Transplanted Modified Bone Marrow???Derived Mesenchymal Stem Cells in Stroke, Stroke, vol.47, issue.7, pp.1817-1841, 2016.
DOI : 10.1161/STROKEAHA.116.012995

D. Kalladka, J. Sinden, and K. Pollock, Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study, The Lancet, vol.388, issue.10046, pp.787-796, 2016.
DOI : 10.1016/S0140-6736(16)30513-X

D. Kota, K. Prabhakara, A. Van-brummen, S. Bedi, H. Xue et al., Propranolol and Mesenchymal Stromal Cells Combine to Treat Traumatic Brain Injury, STEM CELLS Translational Medicine, vol.11, issue.1, pp.33-44, 2016.
DOI : 10.1586/ern.11.113

URL : http://onlinelibrary.wiley.com/doi/10.5966/sctm.2015-0065/pdf

C. Cox, R. Hetz, and G. Liao, Treatment of Severe Adult Traumatic Brain Injury Using Bone Marrow Mononuclear Cells, STEM CELLS, vol.47, issue.4, pp.1065-1079, 2017.
DOI : 10.1161/STROKEAHA.116.012701

P. Tabakow, W. Jarmundowicz, and B. Czapiga, Transplantation of Autologous Olfactory Ensheathing Cells in Complete Human Spinal Cord Injury, Cell Transplantation, vol.50, issue.1, pp.1591-1612, 2013.
DOI : 10.1007/s00234-007-0309-y

G. Boncoraglio, A. Bersano, L. Candelise, B. Reynolds, and E. Parati, Stem cell transplantation for ischemic stroke, Cochrane Database Syst. Rev, p.7231, 2010.

J. Burda and M. Sofroniew, Reactive Gliosis and the Multicellular Response to CNS Damage and Disease, Neuron, vol.81, issue.2, pp.229-248, 2014.
DOI : 10.1016/j.neuron.2013.12.034

URL : https://doi.org/10.1016/j.neuron.2013.12.034

T. Coyne, A. Marcus, D. Woodbury, and I. Black, Marrow Stromal Cells Transplanted to the Adult Brain Are Rejected by an Inflammatory Response and Transfer Donor Labels to Host Neurons and Glia, Stem Cells, vol.102, issue.11, pp.2483-2492, 2006.
DOI : 10.1161/01.STR.32.4.1005

A. Jablonska, M. Janowski, and B. Lukomska, Different methods of immunosuppresion do not prolong the survival of human cord blood-derived neural stem cells transplanted into focal brain-injured immunocompetent rats, Acta Neurobiol Exp, vol.73, pp.88-101, 2013.

L. Boisserand, T. Kodama, J. Papassin, R. Auzely, A. Moisan et al., Biomaterial Applications in Cell-Based Therapy in Experimental Stroke, Stem Cells International, vol.13, issue.3-4, pp.1-14, 2016.
DOI : 10.1016/j.biomaterials.2011.04.032

H. Ghuman, A. Massensini, J. Donnelly, S. Kim, C. Medberry et al., ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate, Biomaterials, vol.91, pp.166-181, 2016.
DOI : 10.1016/j.biomaterials.2016.03.014

D. Emerich, E. Silva, O. Ali, D. Mooney, W. Bell et al., Injectable VEGF Hydrogels Produce Near Complete Neurological and Anatomical Protection following Cerebral Ischemia in Rats, Cell Transplantation, vol.57, issue.2, pp.1063-1071, 2010.
DOI : 10.1227/01.NEU.0000166682.50272.BC

URL : http://journals.sagepub.com/doi/pdf/10.3727/096368910X498278

A. Béduer, C. Vieu, F. Arnauduc, J. Sol, I. Loubinoux et al., Engineering of adult human neural stem cells differentiation through surface micropatterning, Biomaterials, vol.33, issue.2, pp.504-514, 2012.
DOI : 10.1016/j.biomaterials.2011.09.073

N. Theodore, R. Hlubek, J. Danielson, K. Neff, L. Vaickus et al., First Human Implantation of a Bioresorbable Polymer Scaffold for Acute Traumatic Spinal Cord Injury, Neurosurgery, vol.79, issue.2, pp.305-312, 2016.
DOI : 10.1227/NEU.0000000000001283

E. Bible, F. Dell-'acqua, B. Solanky, A. Balducci, P. Crapo et al., Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by 19F- and diffusion-MRI, Biomaterials, vol.33, issue.10, pp.2858-2871, 2012.
DOI : 10.1016/j.biomaterials.2011.12.033

P. Moshayedi, L. Nih, I. Llorente, A. Berg, J. Cinkornpumin et al., Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain, Biomaterials, vol.105, pp.145-155, 2016.
DOI : 10.1016/j.biomaterials.2016.07.028

S. Cramer, B. Abila, N. Scott, M. Simeoni, and L. Enney, Safety, Pharmacokinetics, and Pharmacodynamics of Escalating Repeat Doses of GSK249320 in Patients With Stroke, Stroke, vol.44, issue.5, pp.1337-1342
DOI : 10.1161/STROKEAHA.111.674366

D. Cash, A. Easton, M. Mesquita, J. Beech, S. Williams et al., GSK249320, A Monoclonal Antibody Against the Axon Outgrowth Inhibition Molecule Myelin-Associated Glycoprotein, Improves Outcome of Rodents with Experimental Stroke, Journal of Neurology and Experimental Neuroscience, vol.2, p.28, 2016.
DOI : 10.17756/jnen.2016-014

K. Abe, T. Yamashita, S. Takizawa, S. Kuroda, H. Kinouchi et al., Stem Cell Therapy for Cerebral Ischemia: From Basic Science to Clinical Applications, Journal of Cerebral Blood Flow & Metabolism, vol.342, issue.7, pp.1317-1348, 2012.
DOI : 10.1038/nm1210-1370

URL : http://journals.sagepub.com/doi/pdf/10.1038/jcbfm.2011.187

P. Bath, N. Sprigg, and T. England, Colony stimulating factors (including erythropoietin, granulocyte colony stimulating factor and analogues) for stroke, Cochrane Database Syst Rev, 2013.
DOI : 10.1002/14651858.cd005207.pub2

J. Bogousslavsky, S. Victor, E. Salinas, A. Pallay, G. Donnan et al., Fiblast (Trafermin) in Acute Stroke: Results of the European-Australian Phase II/III Safety and Efficacy Trial, Cerebrovascular Diseases, vol.14, issue.3-4, pp.239-251, 2002.
DOI : 10.1159/000065683

I. Loubinoux, Correlation between cerebral reorganization and motor recovery after subcortical infarcts, NeuroImage, vol.20, issue.4, pp.2166-2180, 2003.
DOI : 10.1016/j.neuroimage.2003.08.017

D. Tombari, I. Loubinoux, J. Pariente, A. Gerdelat, J. Albucher et al., A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients, NeuroImage, vol.23, issue.3, pp.827-839, 2004.
DOI : 10.1016/j.neuroimage.2004.07.058

I. Loubinoux, S. Dechaumont-palacin, E. Castel-lacanal, D. Boissezon, X. Marque et al., Prognostic Value of fMRI in Recovery of Hand Function in Subcortical Stroke Patients, Cerebral Cortex, vol.17, issue.12, pp.2980-2987, 2007.
DOI : 10.1093/cercor/bhm023

J. Pariente, I. Loubinoux, C. Carel, J. Albucher, A. Leger et al., Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke, Annals of Neurology, vol.32, issue.6, pp.718-729, 2001.
DOI : 10.1161/01.STR.32.7.1621

I. Loubinoux, J. Pariente, O. Rascol, P. Celsis, and F. Chollet, Selective serotonin reuptake inhibitor paroxetine modulates motor behavior through practice. A double-blind, placebocontrolled , multi-dose study in healthy subjects, Neuropsychologia, pp.1815-1836, 2002.
DOI : 10.1016/s0028-3932(02)00030-1

I. Loubinoux, J. Pariente, K. Boulanouar, C. Carel, C. Manelfe et al., A Single Dose of the Serotonin Neurotransmission Agonist Paroxetine Enhances Motor Output: Double-Blind, Placebo-Controlled, fMRI Study in Healthy Subjects, NeuroImage, vol.15, issue.1, pp.26-36, 2002.
DOI : 10.1006/nimg.2001.0957

I. Loubinoux, D. Tombari, J. Pariente, A. Gerdelat-mas, X. Franceries et al., Modulation of behavior and cortical motor activity in healthy subjects by a chronic administration of a serotonin enhancer, NeuroImage, vol.27, issue.2, pp.299-313, 2005.
DOI : 10.1016/j.neuroimage.2004.12.023

A. Gerdelat-mas, I. Loubinoux, D. Tombari, O. Rascol, F. Chollet et al., Chronic administration of selective serotonin reuptake inhibitor (SSRI) paroxetine modulates human motor cortex excitability in healthy subjects, NeuroImage, vol.27, issue.2, pp.314-322, 2005.
DOI : 10.1016/j.neuroimage.2005.05.009

I. Loubinoux and F. Chollet, Neuropharmacology in stroke recovery, pp.183-193, 2010.
DOI : 10.1017/CBO9780511777547.018

J. Tardy, J. Pariente, and A. Leger, Methylphenidate modulates cerebral post-stroke reorganization, NeuroImage, vol.33, issue.3, pp.913-922, 2006.
DOI : 10.1016/j.neuroimage.2006.07.014

F. Chollet, Fluoxetine and motor recovery after ischaemic stroke ??? Author's reply, The Lancet Neurology, vol.10, issue.6, pp.500-501, 2011.
DOI : 10.1016/S1474-4422(11)70113-2

F. Chollet, S. Cramer, and C. Stinear, Pharmacological therapies in post stroke recovery: recommendations for future clinical trials, Journal of Neurology, vol.38, issue.1, pp.1461-1468, 2014.
DOI : 10.1161/STROKEAHA.106.474080

G. Mead, C. Hsieh, R. Lee, M. Kutlubaev, A. Claxton et al., Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery. - PubMed - NCBI, Cochrane Database Syst Rev, vol.11, p.9286, 2012.
DOI : 10.1590/1516-3180.20131313t1

URL : http://www.scielo.br/pdf/spmj/v131n3/1516-3180-spmj-131-03-208.pdf

G. Mead, M. Hackett, E. Lundström, V. Murray, G. Hankey et al., The FOCUS, AFFINITY and EFFECTS trials studying the effect(s) of fluoxetine in patients with a recent stroke: a study protocol for three multicentre randomised controlled trials, Trials, vol.34, issue.3, p.369, 2015.
DOI : 10.1097/00005650-199603000-00003

B. Jacobs and C. Fornal, Serotonin and motor activity, Current Opinion in Neurobiology, vol.7, issue.6, pp.820-825, 1997.
DOI : 10.1016/S0959-4388(97)80141-9

C. Lim, S. Kim, J. Park, C. Kim, S. Yoon et al., Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect, Journal of Neuroscience Research, vol.158, issue.4, pp.1037-1045, 2009.
DOI : 10.1161/01.STR.31.8.1829

J. Lee, H. Lee, S. Kang, H. Choi, J. Ryu et al., Fluoxetine inhibits transient global ischemia-induced hippocampal neuronal death and memory impairment by preventing blood???brain barrier disruption, Neuropharmacology, vol.79, pp.161-171, 2014.
DOI : 10.1016/j.neuropharm.2013.11.011

C. Lee, J. Park, K. Yoo, J. Choi, I. Hwang et al., Pre- and post-treatments with escitalopram protect against experimental ischemic neuronal damage via regulation of BDNF expression and oxidative stress, Experimental Neurology, vol.229, issue.2, pp.450-459, 2011.
DOI : 10.1016/j.expneurol.2011.03.015

W. Li, H. Cai, B. Wang, L. Chen, Q. Zhou et al., Chronic fluoxetine treatment improves ischemia-induced spatial cognitive deficits through increasing hippocampal neurogenesis after stroke, Journal of Neuroscience Research, vol.101, issue.1, pp.112-122, 2009.
DOI : 10.1172/JCI200317977

N. Taguchi, S. Nakayama, and M. Tanaka, Fluoxetine has neuroprotective effects after cardiac arrest and cardiopulmonary resuscitation in mouse, Resuscitation, vol.83, issue.5, pp.652-656, 2012.
DOI : 10.1016/j.resuscitation.2011.11.004

A. Buga, O. Ciobanu, G. B?descu, C. Bogdan, R. Weston et al., Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients, Oncotarget, vol.7, issue.14, p.17415, 2016.
DOI : 10.18632/oncotarget.8277

L. Santarelli, S. M. Gross, and C. , Requirement of Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants, Science, vol.301, issue.5634, pp.805-809, 2003.
DOI : 10.1126/science.1083328

E. Vermetten, M. Vythilingam, S. Southwick, D. Charney, and J. Bremner, Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder, Biological Psychiatry, vol.54, issue.7, pp.693-702, 2003.
DOI : 10.1016/S0006-3223(03)00634-6

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233762/pdf

P. Eriksson, E. Perfilieva, T. Björk-eriksson, A. Alborn, C. Nordborg et al., Neurogenesis in the adult human hippocampus, Nature Medicine, vol.92, issue.11, pp.1313-1330, 1998.
DOI : 10.1038/383624a0

J. Chen, S. Magavi, and J. Macklis, Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice, Proceedings of the National Academy of Sciences, vol.13, issue.4, pp.16357-16362, 2004.
DOI : 10.1016/S0962-8924(03)00035-7

S. Magavi, B. Leavitt, and J. Macklis, Induction of neurogenesis in the neocortex of adult mice, Nature, vol.405, pp.951-955, 2000.

M. Dihne, H. Hartung, and R. Seitz, Restoring Neuronal Function After Stroke by Cell Replacement: Anatomic and Functional Considerations, Stroke, vol.42, issue.8, pp.2342-2350, 2011.
DOI : 10.1161/STROKEAHA.111.613422

URL : http://stroke.ahajournals.org/content/strokeaha/42/8/2342.full.pdf

Y. Li, K. Mcintosh, and J. Chen, Allogeneic bone marrow stromal cells promote glial???axonal remodeling without immunologic sensitization after stroke in rats, Experimental Neurology, vol.198, issue.2, pp.313-325, 2006.
DOI : 10.1016/j.expneurol.2005.11.029

J. Lee, J. Hong, G. Moon, P. Lee, Y. Ahn et al., A Long-Term Follow-Up Study of Intravenous Autologous Mesenchymal Stem Cell Transplantation in Patients With Ischemic Stroke, STEM CELLS, vol.25, issue.Suppl, pp.1099-1106, 2010.
DOI : 10.1093/jnen/63.1.84

L. Chen, G. Zhang, A. Khan, X. Guo, and Y. Gu, Clinical Efficacy and Meta-Analysis of Stem Cell Therapies for Patients with Brain Ischemia, Stem Cells International, vol.36, issue.9, pp.1-8, 2016.
DOI : 10.15283/ijsc.2014.7.2.63

K. Prasad, A. Sharma, and A. Garg, Intravenous Autologous Bone Marrow Mononuclear Stem Cell Therapy for Ischemic Stroke, Stroke, vol.45, issue.12, pp.3618-3624, 2014.
DOI : 10.1161/STROKEAHA.114.007028

URL : http://stroke.ahajournals.org/content/strokeaha/45/12/3618.full.pdf

D. Hess, L. Wechsler, and W. Clark, Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial, The Lancet Neurology, vol.16, issue.5, pp.360-368, 2017.
DOI : 10.1016/S1474-4422(17)30046-7

D. Kondziolka, G. Steinberg, and L. Wechsler, Neurotransplantation for patients with subcortical motor stroke: a Phase 2 randomized trial, Journal of Neurosurgery, vol.103, issue.1, pp.38-45, 2005.
DOI : 10.3171/jns.2005.103.1.0038

D. Kondziolka, L. Wechsler, and S. Goldstein, Transplantation of cultured human neuronal cells for patients with stroke, Neurology, vol.55, issue.4, pp.565-574, 2000.
DOI : 10.1212/WNL.55.4.565

C. Stilley, C. Ryan, D. Kondziolka, A. Bender, S. Decesare et al., Changes in cognitive function after neuronal cell transplantation for basal ganglia stroke, Neurology, vol.63, issue.7, pp.1320-1322, 2004.
DOI : 10.1212/01.WNL.0000140700.44904.53

J. Silver and J. Miller, Regeneration beyond the glial scar, Nature Reviews Neuroscience, vol.5, issue.2, pp.146-156, 2004.
DOI : 10.1038/nrn1326

URL : http://www.nature.com/nrn/journal/v5/n2/pdf/nrn1326.pdf

V. Tysseling-mattiace, V. Sahni, K. Niece, D. Birch, C. Czeisler et al., Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury, Journal of Neuroscience, vol.28, issue.14, pp.3814-3823, 2008.
DOI : 10.1523/JNEUROSCI.0143-08.2008

URL : http://www.jneurosci.org/content/jneuro/28/14/3814.full.pdf

J. Slotkin, C. Pritchard, and B. Luque, Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury, Biomaterials, vol.123, pp.63-76, 2017.
DOI : 10.1016/j.biomaterials.2017.01.024

K. Park, Y. Teng, and E. Snyder, The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue, Nature Biotechnology, vol.20, issue.11, pp.1111-1117, 2002.
DOI : 10.1038/nbt751

K. Jin, X. Mao, L. Xie, V. Galvan, B. Lai et al., Transplantation of Human Neural Precursor Cells in Matrigel Scaffolding Improves Outcome from Focal Cerebral Ischemia after Delayed Postischemic Treatment in Rats, Journal of Cerebral Blood Flow & Metabolism, vol.1123, issue.3, pp.534-544, 2010.
DOI : 10.1227/01.NEU.0000166682.50272.BC

G. Delcroix, E. Garbayo, L. Sindji, O. Thomas, C. Vanpouille-box et al., The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats, Biomaterials, vol.32, issue.6, pp.1560-1573, 2011.
DOI : 10.1016/j.biomaterials.2010.10.041

URL : https://hal.archives-ouvertes.fr/inserm-00541842

L. Vaysse, A. Beduer, J. Sol, C. Vieu, and I. Loubinoux, Micropatterned bioimplant with guided neuronal cells to promote tissue reconstruction and improve functional recovery after primary motor cortex insult, Biomaterials, vol.58, pp.46-53, 2015.
DOI : 10.1016/j.biomaterials.2015.04.019

L. Vaysse, C. Labie, B. Canolle, S. Jozan, A. Béduer et al., Adult human progenitor cells from the temporal lobe: Another source of neuronal cells, Brain Injury, vol.11, issue.13-14, pp.1636-1645, 2012.
DOI : 10.1002/hipo.1045

F. Tensaouti and J. Lotterie, Sysiphe-Neuroimaging software toolbox, Eur. Soc. Magn. Reson. Med. Biol. Congr, pp.2-4, 2008.

Z. Álvarez, O. Castaño, A. Castells, M. Mateos-timoneda, J. Planell et al., Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold, Biomaterials, vol.35, issue.17, pp.4769-4781, 2014.
DOI : 10.1016/j.biomaterials.2014.02.051