Insight into boron-doped diamond Raman spectra characteristic features

V. Mortet a, b, *, Z. Vlčková Živcová c, A. Taylor a, b, O. Frank c, P. Hubík d, D. Trémolilles e, F. Jomard f, J. Barjon f, L. Kavan c

a Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21, Prague 8, Czech Republic
b Czech Technical University in Prague, Faculty of Biomedical Engineering, Sítňa 3105, 272 01, Kladno, Czech Republic
c J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague 8, Czech Republic
d Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
e LAAS-CNRS, Université de Toulouse, CNRS, 7, avenue du Colonel Roche, 31031, Toulouse Cedex 4, France
f Groupe d’Etude de la Matière Condensée, Université Versailles St Quentin, 45, avenue des Etats Unis, 78035, Versailles Cedex, France

A R T I C L E I N F O

Article history:
Received 9 December 2016
Received in revised form 5 January 2017
Accepted 8 January 2017
Available online 9 January 2017

A B S T R A C T

Characteristic Raman features of boron-doped diamond layers with metallic conduction are studied experimentally and discussed in comparison with an extensive selection of literature data. Despite evidence that the main Raman bands are mostly characteristic features of carbon atom vibration modes, their position is found to be proportional to boron concentration. While the origin of the Raman bands located at c.a. 500 cm$^{-1}$ remains unclear, the band centred at c.a. 1200 cm$^{-1}$ is attributed to a maximum of phonon density of states due to softening of the Raman wave vector conservation rule. The downshift and broadening of the diamond line are attributed, primarily, to the domain size effect caused by scattering on boron impurities, secondly to the Fano effect due to electronic Raman interaction, and finally to lattice expansion due to the boron doping.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Boron-doped diamond with metallic conduction is a promising material for various electronic and electrochemical applications. It is a basic building block for the fabrication of ohmic contacts [1] in diamond electronic devices. It is also recognized as one of the best working electrochemical electrodes with high chemical stability, low capacitive current and a large potential window [2]. Diamond electrodes can be used for fabrication of chemical and biological sensors [3], water treatment systems [4], super capacitors [5], dye sensitized solar cells [6–9], etc. Measurement of boron concentration is an important feedback parameter and is usually determined by Secondary Ions Mass Spectroscopy (SIMS) and Hall effect measurements with the assumption that the acceptor concentration is equal to the hole concentration. While Raman spectrum of pure diamond is unmistakably simple, it becomes more and more complex with an increasing concentration of non-diamond carbon species and other impurities. More specifically, Raman spectra of boron-doped diamond are not fully understood. However, Raman spectroscopy is a simple and non-destructive technique which has been reported to enable the determination of boron concentration [10]. In this work, we analyse characteristic features in Raman spectra of boron-doped diamond with metallic conductivity in order to deepen the understanding of their origin and their dependence with boron concentration.

2. Experimental

Epitaxial (111) diamond layers were grown in a 1.5 kW resonance cavity microwave plasma enhanced chemical vapour deposition system AX5010 from Seki Diamond Systems with a base pressure below 2 × 10$^{-6}$ mbar. Substrates are high-pressure high-temperature synthetic Ib diamond crystals from Sumitomo ELECTRIC Hartmetall GmbH, polished as described in Ref. [11]. Prior to CVD deposition, diamond substrates were cleaned in hot sulphuric acid with potassium nitrate for 10 min, rinsed in hot deionized water, acetone and alcohol in an ultrasonic bath for 10 min. Epitaxial layers were grown at high temperature (c.a. 1000 °C) in
diluted methane in hydrogen (0.1%) with the addition of a boron precursor (trimethylborane) with variable boron to carbon (B/C) ratio in the gas phase. The thickness of deposited layers was estimated by double mass measurement using a high precision ME5 microbalance (Sartorius). Electrical properties of deposited layers were measured by the van der Pauw method at room temperature and 100 °C using a Keithley 6221 current source and Keithley 2182A nano-voltmeter. Secondary-ion mass spectrometry was measured with Cs⁺ primary ions accelerated at 10 keV using a Cameca IMS 4f apparatus on layers grown with a B/C ratio in the gas phase of 20,000 ppm to determine its boron atoms depth distribution. The concentration of boron was quantified using implanted standards. Raman spectroscopy measurements were carried out using a Labram HR spectrometer (Horiba Jobin-Yvon) interfaced to an Olympus microscope (objective 100×) equipped with a 50 μm confocal hole and a He–Ne laser 633 nm (1.96 eV) with 8 mW power. The spectrometer was calibrated using the silicon Si_2p_2 peak at 520.2 cm⁻¹. Raman spectra were corrected for the spectrometer spectral response.

3. Results and discussion

Van der Pauw Hall-effect measurements revealed hole concentrations above the Mott transition concentration (i.e. above $\approx 2–3 \times 10^{20}$ cm⁻³) [12,13] in all samples. This fact together with the minute variation in resistivity with temperature indicates that all studied layers have metallic type conduction. Deposition rate (r_p), resistivity (ρ), acceptor concentration (N_a), assumed equal to the hole concentration, and mobility (μ) of deposited layers with variable B/C ratio are reported in Table 1. Raman spectra of diamond layers deposited with variable B/C ratios, shown in Fig. 1, exhibit the characteristic features of boron-doped diamond layers with metallic conduction [14,15]: a wide asymmetric band centred around 500 cm⁻¹ (referred as “L1” in this work), another asymmetric band centred around 1200 cm⁻¹ (referred as “L2”), and the diamond’s zone centre phonon line (referred as “RD”), which is redshifted relatively to the intrinsic diamond line (1332.5 cm⁻¹) next to a dip trough (or anti resonant line) centred around 1340-1350 cm⁻¹ (referred as “A”). Even though the occurrence of the L1 and L2 lines appears to be a signature of highly boron-doped diamond, their origin is controversial. Boron and carbon isotopic shifts of the L1 line are not fully consistent with the assignment of the L1 line to boron dimers or boron-carbon vibrations [16]. On the contrary, the carbon isotopic shifts of the L2 line unmistakably point toward a C–C vibration mode [16]. The particular shape of the diamond Raman line, or Fano line-shape, has been ascribed to quantum interference between the zone centre optical phonon and a continuum of electronic Raman effect [17]. Finally, the attribution to boron defects of additional low intensity and not well resolved peaks between 500 and 1200 cm⁻¹ has been ascribed to boron defects and a continuum of electronic Raman effect has been ascribed to quantum interference between the zone particular shape of the diamond Raman line, or Fano line-shape, and a He–Ne laser 633 nm (1.96 eV) with 8 mW power. The spectrometer was calibrated using the silicon Si_2p_2 peak at 520.2 cm⁻¹. Raman spectra were corrected for the spectrometer spectral response.

The Raman shift position of L1 (ω_{L1}) and L2 (ω_{L2}) lines as a function of the diamond Raman line position (ω_{RD}) are shown on Fig. 2. Despite the scattering of the data attributed to the variability of sample quality, variable excitation wavelengths, variable measurement temperature, and possible stress in the diamond layers [20], the linearity of ω_{L1} and ω_{L2} with ω_{RD} is clearly visible. The linear variation of both L2 and RD lines with B/C ratio of poly-crystalline boron-doped diamond reported by S. Ghodbane and A. Deneuville [21] also supports this result. Additionally, the observed linear correlations suggest that both the L1 and L2 lines have the same physical origin as the diamond Raman line and might be a result of vibration modes of the disordered diamond lattice. This is consistent with the assignment of the L2 line to a maximum of the phonon density of states (PDOS) in diamond due to a high defect concentration and softening of the Raman wave vector conservation rule [22]. On the other hand, even though there has not been agreement on the origin of the L1 peak, i.e. whether it is related to a maximum in PDOS, to boron dimers or boron-to-carbon vibrations [14], the boron content has been empirically related to the down-shift of the L1 band [10,23].

Fig. 3 shows the variation of the reported boron concentration measured by SIMS ([B]SIMS) as a function of the L1 band maxima (ω_{L1}). This figure underlines the relatively good linear relationship between boron concentration [B]SIMS and L1 peak position [23]. Linear fitting parameters are reported in Table 2. Considering the aforementioned linear relations between ω_{L1}, ω_{L2}, and ω_{RD}, the boron concentration in diamond is consequently also linear with

![Fig. 1. Raman spectra of epitaxial (111) boron-doped diamond layers grown with various B/C ratios in the gas phase. (A colour version of this figure can be viewed online.)](image-url)

<table>
<thead>
<tr>
<th>B/C (ppm)</th>
<th>r_p (μm/h)</th>
<th>N_a (cm⁻³)</th>
<th>ρ (mΩ cm)</th>
<th>μ (cm² V⁻¹ s⁻¹)</th>
<th>ω_{RD} (cm⁻¹)</th>
<th>Γ (cm⁻¹)</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1.02</td>
<td>2.6 10^{20}</td>
<td>13</td>
<td>1.8</td>
<td>1329</td>
<td>7.73</td>
<td>–1.72</td>
</tr>
<tr>
<td>10,000</td>
<td>1.14</td>
<td>4.6 10^{20}</td>
<td>5.8</td>
<td>2.3</td>
<td>1320</td>
<td>17.18</td>
<td>–1.31</td>
</tr>
<tr>
<td>20,000</td>
<td>1.8</td>
<td>1.8 10^{21}</td>
<td>2.3</td>
<td>1.8</td>
<td>1320</td>
<td>15.43</td>
<td>–1.26</td>
</tr>
<tr>
<td>40,000</td>
<td>0.04</td>
<td>1.15 10^{21}</td>
<td>2.07</td>
<td>2.62</td>
<td>1323</td>
<td>16.25</td>
<td>–1.75</td>
</tr>
<tr>
<td>100,000</td>
<td>0.02</td>
<td>2.5 10^{21}</td>
<td>0.96</td>
<td>2.59</td>
<td>1320</td>
<td>17.26</td>
<td>–1.98</td>
</tr>
</tbody>
</table>
the position of the L2 and RD lines despite both peaks being clearly identified as pure C–C vibration modes. Calculated linear equation coefficients and corresponding zero values, i.e. X values at Y equal to zero, are also reported in Table 1. These zero values correspond to the estimated line positions of undoped diamond. The calculated value of the diamond Raman line: \(\omega_{\text{RD}}(B = 0) \approx 1326.9 \text{ cm}^{-1} \) is remarkably very close to the diamond Raman line position. Corrected for the Fano effect (c.a. 4-5 cm\(^{-1}\), see below), this zero value is perfectly consistent with the known position of the intrinsic diamond zone centre phonon line. Similarly, the zero value of the L2 line: \(\omega_{\text{L2}}(B = 0) \approx 1230.9 \text{ cm}^{-1} \) is interestingly very close to the diamond phonon density of state maximum located at c.a.1250 cm\(^{-1}\) [20], supporting its assignment to the phonon density of states maximum due to the high concentration of boron defects and the consequent softening of Raman wave-vector conservation rule.

Superimposed onto the L2 line is the diamond line with its characteristic Fano line-shape for boron concentrations higher than the Mott transition. This line-shape results from the interaction of the discrete zone centre phonon Raman line with continuous electronic Raman band and was first reported by Cerdeira, Fjeldly and Cardona in highly doped silicon [24]. In the particular case of constant electronic Raman, the resulting Fano line-shape is analytically described by equation (1).

\[
F(\sigma) = \frac{(q + \epsilon)^2}{1 + \epsilon^2}
\]

with \(\epsilon(\omega) = \frac{\sigma - \sigma_0}{\Gamma} \) (2)

with \(\epsilon(\omega) \) the reduced wavenumber, \(q \) is the asymmetry coefficient, \(\omega \) is the wavenumber, \(\sigma_0 \) and \(\Gamma \) are the wavenumber and the full width at half maximum of the phonon’s Raman line. The Fano

\[\text{Table 2} \]
<table>
<thead>
<tr>
<th>Y (unit)</th>
<th>a (unit)</th>
<th>X (unit)</th>
<th>b (unit)</th>
<th>Zero (unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_{\text{L1}}) (cm(^{-1}))</td>
<td>1.40</td>
<td>(\omega_{\text{RD}}) (cm(^{-1}))</td>
<td>-1335.4 (cm(^{-1}))</td>
<td>-</td>
</tr>
<tr>
<td>(\omega_{\text{L2}}) (cm(^{-1}))</td>
<td>0.77</td>
<td>(\omega_{\text{RD}}) (cm(^{-1}))</td>
<td>212 (cm(^{-1}))</td>
<td>-</td>
</tr>
<tr>
<td>([B]_{\text{SIMS}}) (cm(^{-3}))</td>
<td>-6.99 \times 10^{19} (cm(^{-2}))</td>
<td>(\omega_{\text{RD}}) (cm(^{-1}))</td>
<td>3.57 \times 10^{20} (cm(^{-2}))</td>
<td>510.4 (cm(^{-1}))</td>
</tr>
<tr>
<td>([B]_{\text{LOD}}) (cm(^{-3}))</td>
<td>-1.28 \times 10^{20} (cm(^{-2}))</td>
<td>(\omega_{\text{L1}}) (cm(^{-1}))</td>
<td>1.57 \times 10^{21} (cm(^{-2}))</td>
<td>1230.9 (cm(^{-1}))</td>
</tr>
<tr>
<td>([B]_{\text{LOD}}) (cm(^{-3}))</td>
<td>-9.81 \times 10^{19} (cm(^{-2}))</td>
<td>(\omega_{\text{RD}}) (cm(^{-1}))</td>
<td>1.30 \times 10^{23} (cm(^{-2}))</td>
<td>1326.9 (cm(^{-1}))</td>
</tr>
<tr>
<td>(\Gamma) (cm(^{-1}))</td>
<td>-1.29</td>
<td>(\sigma_0) (cm(^{-1}))</td>
<td>1726.6 (cm(^{-1}))</td>
<td>-</td>
</tr>
</tbody>
</table>
function possesses two extrema: a resonant peak at \(\varepsilon(\omega_R) = -q\) and
an anti-resonant peak at \(\varepsilon(\omega_A) = q^{-1}\). Consequently, a red-shift of
the resonant peak corresponds to a negative value of the asymmetric coefficient. Indeed, reported values of asymmetric coefficient in
doped diamond are negative with a value c.a. \(-2 \pm 0.4\)
[22,25–29].

The variation of the Fano line shape with the negative asymmetric coefficient \(q\) is illustrated in the supplementary data. Fitting
parameters \((q, \omega_0\) and \(\Gamma\)) of the diamond Fano line-shape can be
quickly estimated using a simple analytical method knowing the
resonant \((\omega_R)\), anti-resonant \((\omega_A)\) and wavenumber at half
maximum \(\omega_0(1/2)\) between \(\omega_R\) and \(\omega_A\). Estimated fitting parameters of
epitaxial layers used in this study are reported in Table 1. Values of
the line width \(\Gamma\) are also reported as function of the peak position
in Fig. 4 and they are compared to data available from literature. The observed
linearity of diamond Raman line broadening and its downward shift (fitting parameters are reported in Table 2) is
characteristic of a decrease in domain size and phonon confinement effects. In 1988, Fauchet and Campbell demonstrated that
silicon Raman linewidth varies linearly with the frequency shift in
microcrystalline silicon with variable domain size [30]. Later,
LeGrice et al. reported that the same linear relation applies to
diamond [31] based on a comparison of silicon and diamond phonon dispersion curves. However, the determined proportionality
between diamond’s line maxima and full width at half maximum is c.a. 2.5 times smaller than the one calculated for silicon.
Another reason for the downshift of the doped diamond Raman mode is lattice expansion, which inevitably occurs upon
doping. Following the study of Wojewoda et al. [32], we estimate the upper limit of the lattice expansion for the maximum doping
presented in our data to be \(-0.25–0.3\%\) [32]. With the Grüneisen parameter of the zone centre phonon of \(-1\) [33], the maximum Raman shift for \([B] = 5 \times 10^{21} \text{cm}^{-3}\) reaches 6.6–8 \text{cm}^{-1}.

The effect of domain size on full maximum \((\Gamma)\) and position of the diamond Raman line have been studied by several
groups of researchers [20,31,34,35]. A noticeable down shift and an
inversely proportional line broadening with domain size has been
reported by Zaitsev [20] and Yoshikawa [35]. Experimental data
from Refs. [31,34–36] of domain size \((L)\) as a function of \(\Gamma\) of
undoped diamond nano-crystals, reported in Fig. 5, more closely
follow Zaitsev’s model in comparison to Yoshikawa’s model. Average
boron-to-boron atom distance \((d_{B-B})\) is also reported on
Fig. 5 as a function of the Fano fitted \(\Gamma\), i.e. diamond Raman line
width determined from literature. Average boron-to-boron atom
distance \((d_{B-B})\) is calculated from the boron concentration using:

\[
d_{B-B}(nm) = 10^7 \sqrt[3]{[B](cm^{-3})} \tag{3}\n\]

Boron concentration is estimated from the diamond line position
using the aforementioned linear relation. Fig. 5 clearly shows that
the average boron-to-boron atom distance follows the same
variation with the diamond line width as domain size varies,
though with a factor of c.a. 5 difference. This result further
designates that the diamond line broadening and red-shifting are due to
a domain size effect by phonon scattering on boron impurities. This
result is not too surprising as impurities are known to strongly
reduce semiconductors’ thermal conductivity by two effects:
carrier-phonon scattering (for electrically active impurities)
and phonon-impurity scattering (due to the impurities’ mass and radius differences) [37].

In an attempt to conceive the relation between the domain size
effect and the boron concentration in doped diamond, we
calculated the radial distribution function of boron atoms (RDFB) in
doped diamond (see Fig. 6). The RDFB has been computed using
a supercell of \(i\) \((i\ being\ an\ integer)\) elementary cubic cells with a
randomly positioned boron atom (see Fig. 6a–b). The size of the
elementary cubic cell is arbitrary set to unity but can also be
defined as the average boron-to-boron atom distance \((a)\). The boron
atom position in each elementary cell was randomly positioned
around the cube’s centre using a normal distribution with the
variance \(\sigma^2 = 1/(2\pi)\) [38]. The RDFB was determined by computing
the number of boron atoms as a function of distance \((r)\) to the origin
\((O)\) of the supercell and normalized to the surface of the sphere of
the same radius. The RDFB has been calculated on 1/8 of the space
due to the system symmetry. Fig. 6b shows the doped diamond can
be locally seen as a quasi-perfect crystal encapsulated by discon-
tinuous layers of spherical shells with a variable concentration of
boron atoms. The first defective spherical shell is located at

![Fig. 4. Variation of fitted diamond’s zone centre phonon line width (\(\Gamma\)) as a function of fitted line position (\(\omega_0\)) using Fano function from various reports [16,27,28,42–46] for various types of CVD diamond layers: polycrystalline diamond (circles), (100) epitaxial diamond layers (squares) and (111) epitaxial diamond layers (diamond), and Raman laser excitation wavelength: 633 nm (red), 514 nm (green) and 488 nm (blue). Black stars correspond to results of this study. (A colour version of this figure can be viewed online.)](image)

![Fig. 5. Diamond domain size (left scale) compared to average boron-to-boron distance (right scale) as a function of zone centre phonon Raman line width. Black line: Zaitsev’s model [20]; red line: Yoshikawa’s model [35]; full circles: experimental values from Ref. [31] (black) [34], (red) and [35] (green); open circle: average boron-to-boron distance extracted from Refs. [10,22,26–29,43,45] and this work. (A colour version of this figure can be viewed online.)](image)
As the radius increases, the distance between consecutive defective spherical shells decreases until their discontinuity vanishes and the defect concentration becomes quasi constant, i.e. the diamond crystal can be locally seen as low defective spherical domains embedded in a continuously defective crystal. The transition between discontinuous and continuous defective spheres is independent of boron concentration and is located at a radius of $2^{\frac{1}{3}}$ units, which corresponds to a domain size of $4^{\frac{1}{3}}$ times the boron-to-boron atom average distance. This value is roughly consistent with the proportionality factor of domain size and boron to boron atom distance. From this novel approach and beside the Fano effect, phonon scattering on randomly distributed boron impurities is the primary effect which broadens and redshifts the Raman zone centre phonon line in boron doped diamond layers comparably as phonon scattering at grain boundaries in nano-diamond particles.

4. Conclusion

Epitaxial diamond layers with variable boron concentrations and metallic conductivity were prepared by microwave plasma enhanced chemical vapour deposition and characterized by Raman spectroscopy. Despite evidence that the main Raman bands are mostly characteristic features of carbon atom vibration modes in diamond, their position is proportional to the boron concentration. Analysis of Fano fitting parameters indicates that the downshift and broadening of the diamond line are primarily due to phonon confinement, secondly to electronic Raman interaction and finally to lattice expansion due to the boron doping. Analysis of boron atoms radial distribution function supports this assertion, as it shows that doped diamond can be considered as nanometre sized domains encapsulated in a highly defective matrix.

Acknowledgements

The work was financially supported by the project 13–317835 of Czech Science Foundation, the French-Czech Project Barrande 35785SC of the Czech Ministry of Education, Youth and Sports and the J.E. Purkyne fellowship awarded to V. Mortet by the Czech Academy of Sciences. We also acknowledge Ing. Lucie Holasová and Ing. Jaroslava Hnilíčková of the Institute of Organic Chemistry and Biochemistry CAS, v.v.i. for mass measurements and Ing. Lukáš Kaderávek and Ing. Lucie Drobkhlová of Institute of Physics CAS, v.v.i. for their contribution in the preparation of the manuscript.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.carbon.2017.01.022.

References

[4] B.P. Chaplin, Critical review of electrochemical advanced oxidation processes...