Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback

Abstract : This article concerns the nonlinear Korteweg-de Vries equation with boundary time-delay feedback. Under appropriate assumption on the coefficients of the feedbacks (delayed or not), we first prove that this nonlinear infinite dimensional system is well-posed for small initial data. The main results of our study are two theorems stating the exponential stability of the nonlinear time delay system. Two different methods are employed: a Lyapunov functional approach (allowing to have an estimation on the decay rate, but with a restrictive assumption on the length of the spatial domain of the KdV equation) and an observability inequality approach, with a contradiction argument (for any non critical lengths but without estimation on the decay rate). Some numerical simulations are given to illustrate the results.
Type de document :
Article dans une revue
IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, In press, 〈10.1109/TAC.2018.2849564〉
Liste complète des métadonnées

https://hal.laas.fr/hal-01643321
Contributeur : Lucie Baudouin <>
Soumis le : lundi 27 novembre 2017 - 13:50:59
Dernière modification le : lundi 11 mars 2019 - 09:09:24

Identifiants

Citation

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback. IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, In press, 〈10.1109/TAC.2018.2849564〉. 〈hal-01643321〉

Partager

Métriques

Consultations de la notice

446

Téléchargements de fichiers

144