R. Gonzalez, M. Fiacchini, T. Alamo, J. Guzman, and F. Rodriguez, Online robust tube-based MPC for time-varying systems: a practical approach, International Journal of Control, vol.16, issue.6, pp.1157-1170, 2011.
DOI : 10.1080/00207179.2010.485280

URL : https://hal.archives-ouvertes.fr/hal-00968164

S. Rakovic, B. Kouvaritakis, M. Cannon, C. Panos, and R. Findeisen, Parameterized Tube Model Predictive Control, IEEE Transactions on Automatic Control, vol.57, issue.11, pp.2746-2761, 2012.
DOI : 10.1109/TAC.2012.2191174

J. K. Scott and P. I. Barton, Bounds on the reachable sets of nonlinear control systems, Automatica, vol.49, issue.1, pp.93-100, 2013.
DOI : 10.1016/j.automatica.2012.09.020

J. Lygeros, On reachability and minimum cost optimal control, Automatica, vol.40, issue.6, pp.917-927, 2004.
DOI : 10.1016/j.automatica.2004.01.012

J. Lygeros, D. N. Godbole, and S. Sastry, Verified hybrid controllers for automated vehicles, IEEE Transactions on Automatic Control, vol.43, issue.4, pp.522-539, 1998.
DOI : 10.1109/9.664155

C. J. Tomlin, J. Lygeros, and S. Sastry, A game theoretic approach to controller design for hybrid systems, Proceedings of the IEEE, vol.88, issue.7, pp.949-969, 2000.
DOI : 10.1109/5.871303

L. De-alfaro, T. A. Henzinger, and O. Kupferman, Concurrent reachability games, Theoretical Computer Science, vol.386, issue.3, pp.188-217, 2007.
DOI : 10.1016/j.tcs.2007.07.008

Y. Gao, J. Lygeros, and M. Quincampoix, The Reachability Problem for Uncertain Hybrid Systems Revisited: A Viability Theory Perspective, HSCC, pp.242-256, 2006.
DOI : 10.1109/6979.928722

N. Meslem, N. Ramdani, and Y. Candau, Using hybrid automata for set-membership state estimation with uncertain nonlinear continuous-time systems, Journal of Process Control, vol.20, issue.4, pp.481-489, 2010.
DOI : 10.1016/j.jprocont.2010.02.001

URL : https://hal.archives-ouvertes.fr/hal-00629908

E. Benazera and L. Travé-massuyès, Set-Theoretic Estimation of Hybrid System Configurations, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol.39, issue.5, pp.1277-1291, 2009.
DOI : 10.1109/TSMCB.2009.2015280

V. T. Le, C. Stoica, T. Alamo, E. F. Camacho, and D. Dumur, Zonotopic guaranteed state estimation for uncertain systems, Automatica, vol.49, issue.11, pp.3418-3424, 2013.
DOI : 10.1016/j.automatica.2013.08.014

URL : https://hal.archives-ouvertes.fr/hal-00876455

F. Chernousko, Ellipsoidal state estimation for dynamical systems Nonlinear Analysis: Theory, Methods Applications, vol.63, issue.57, pp.872-879, 2005.

H. Guéguen, M. Lefebvre, J. Zaytoon, and O. Nasri, Safety verification and reachability analysis for hybrid systems, Annual Reviews in Control, vol.33, issue.1, pp.25-36, 2009.
DOI : 10.1016/j.arcontrol.2009.03.002

E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh, O. Stursberg et al., Verification of hybrid systems based on counterexampleguided abstraction refinement, TACAS, pp.192-207, 2003.

C. J. Tomlin, I. M. Mitchell, A. M. Bayen, and M. Oishi, Computational techniques for the verification of hybrid systems, Proceedings of the IEEE, vol.91, issue.7, pp.986-1001, 2003.
DOI : 10.1109/JPROC.2003.814621

A. Aswani, J. Ding, H. Huang, M. Vitus, J. Gillula et al., Verification and control of hybrid systems using reachability analysis with machine learning, Proceedings of the 15th ACM international conference on Hybrid Systems: Computation and Control, HSCC '12, pp.1-2, 2012.
DOI : 10.1145/2185632.2185634

A. Donzé, B. Krogh, and A. Rajhans, Parameter Synthesis for Hybrid Systems with an Application to Simulink Models, HSCC, ser, pp.165-179, 2009.
DOI : 10.1115/DETC2005-85597

J. Lygeros, C. Tomlin, S. Sastry-]-r, T. Alur, J. Dang et al., On controller synthesis for nonlinear hybrid systems Hierarchical modeling and analysis of embedded systems, IEEE CDC Proceedings of the IEEE, pp.2101-2106, 1998.

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. Ho et al., The algorithmic analysis of hybrid systems, Theoretical Computer Science, vol.138, issue.1, pp.3-34, 1995.
DOI : 10.1016/0304-3975(94)00202-T

E. Asarin, O. Maler, and A. Pnueli, Reachability analysis of dynamical systems having piecewise-constant derivatives, Theoretical Computer Science, vol.138, issue.1, pp.35-66, 1995.
DOI : 10.1016/0304-3975(94)00228-B

A. Chutinan and B. Krogh, Computational techniques for hybrid system verification Automatic Control, IEEE Transactions on, vol.48, issue.1, pp.64-75, 2003.

A. Girard, Reachability of Uncertain Linear Systems Using Zonotopes, HSCC, pp.291-305, 2005.
DOI : 10.1007/978-3-540-31954-2_19

URL : https://hal.archives-ouvertes.fr/hal-00307003

A. Girard and C. L. Guernic, Zonotope/Hyperplane Intersection for Hybrid Systems Reachability Analysis, HSCC, pp.215-228, 2008.
DOI : 10.1007/978-3-540-78929-1_16

URL : https://hal.archives-ouvertes.fr/hal-00306993

M. Althoff and B. H. Krogh, Avoiding geometric intersection operations in reachability analysis of hybrid systems, Proceedings of the 15th ACM international conference on Hybrid Systems: Computation and Control, HSCC '12, pp.45-54
DOI : 10.1145/2185632.2185643

A. Kurzhanskiy and P. Varaiya, Ellipsoidal techniques for reachability analysis of discrete-time linear systems Automatic Control, IEEE Transactions on, vol.52, issue.1, pp.26-38, 2007.

L. Doyen, T. Henzinger, and J. Raskin, Automatic Rectangular Refinement of Affine Hybrid Systems, FORMATS'05, pp.144-161, 2005.
DOI : 10.1007/11603009_13

M. Lefebvre and H. Guguen, Hybrid abstractions of affine systems Nonlinear Analysis: Theory, Methods Applications, vol.65, issue.6, pp.1150-1167, 2006.

M. Kloetzer and C. Belta, Reachability analysis of multi-affine systems, HSCC, pp.348-362, 2006.

R. Alur, T. Dang, and F. Ivan?i´ivan?i´c, Predicate abstraction for reachability analysis of hybrid systems, ACM Transactions on Embedded Computing Systems, vol.5, issue.1, pp.152-199, 2006.
DOI : 10.1145/1132357.1132363

I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games, IEEE Transactions on Automatic Control, vol.50, issue.7, pp.947-957, 2005.
DOI : 10.1109/TAC.2005.851439

V. Shia, R. Vasudevan, R. Bajcsy, and R. Tedrake, Convex computation of the reachable set for controlled polynomial hybrid systems, 53rd IEEE Conference on Decision and Control, pp.1499-1506, 2014.
DOI : 10.1109/CDC.2014.7039612

M. Althoff, O. Stursberg, and M. Buss, Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization, 2008 47th IEEE Conference on Decision and Control, pp.4042-4048, 2008.
DOI : 10.1109/CDC.2008.4738704

G. Batt, C. Belta, and R. Weiss, Model Checking Genetic Regulatory Networks with Parameter Uncertainty, HSCC, pp.61-75, 2007.
DOI : 10.1007/978-3-540-71493-4_8

E. Asarin, T. Dang, and A. Girard, Hybridization methods for the analysis of nonlinear systems, Acta Informatica, vol.12, issue.2, pp.451-476, 2007.
DOI : 10.1007/978-1-4612-0017-8

URL : https://hal.archives-ouvertes.fr/hal-00157475

S. Burden, H. Gonzalez, R. Vasudevan, R. Bajcsy, and S. Sastry, Numerical integration of hybrid dynamical systems via domain relaxation, IEEE Conference on Decision and Control and European Control Conference, pp.3958-3965, 2011.
DOI : 10.1109/CDC.2011.6161050

T. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-toi, Beyond HyTech: Hybrid Systems Analysis Using Interval Numerical Methods, HSCC, pp.130-144, 2000.
DOI : 10.1007/3-540-46430-1_14

N. Ramdani, N. Meslem, Y. Candau-chen, E. Abrahám, and S. Sankaranarayanan, A Hybrid Bounding Method for Computing an Over-Approximation for the Reachable Set of Uncertain Nonlinear Systems, RTSS, pp.2352-2364, 2009.
DOI : 10.1109/TAC.2009.2028974

URL : https://hal.archives-ouvertes.fr/hal-00629913

N. Nedialkov and M. Von-mohrenschildt, Rigorous simulation of hybrid dynamic systems with symbolic and interval methods, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), pp.140-147, 2002.
DOI : 10.1109/ACC.2002.1024794

A. Rauh, M. Kletting, H. Aschemann, and E. Hofer, Interval methods for simulation of dynamical systems with state-dependent switching characteristics, IEEE CACSD, pp.355-360, 2006.

S. Ratschan and Z. She, Safety verification of hybrid systems by constraint propagation based abstraction refinement, ACM Transactions in Embedded Computing Systems, vol.6, issue.1, 2007.

S. Gulwani and A. Tiwari, Constraint-Based Approach for Analysis of Hybrid Systems, CAV, pp.190-203, 2008.
DOI : 10.1007/978-3-540-70545-1_18

A. Eggers, M. Fränzle, and C. Herde, SAT Modulo ODE: A Direct SAT Approach to Hybrid Systems, ATVA, ser. LNCS, pp.171-185, 2008.
DOI : 10.1007/978-3-540-78929-1_30

A. Eggers, N. Ramdani, N. S. Nedialkov, and M. Fränzle, Improving the SAT modulo ODE approach to hybrid systems analysis by combining different enclosure methods, Software & Systems Modeling, pp.121-148, 2015.
DOI : 10.1007/BFb0031569

URL : https://hal.archives-ouvertes.fr/hal-00747953

N. Ramdani and N. S. Nedialkov, Computing reachable sets for uncertain nonlinear hybrid systems using interval constraint-propagation techniques, Nonlinear Analysis: Hybrid Systems, vol.5, issue.2, pp.149-162, 2011.
DOI : 10.1016/j.nahs.2010.05.010

URL : https://hal.archives-ouvertes.fr/hal-00611996

L. G. Birta, T. I. Oren, and D. L. Kettenis, A robust procedure for discontinuity handling in continuous system simulation, Trans. Soc. Comput. Simul. Int, vol.2, issue.3, pp.189-205, 1985.

L. F. Shampine, I. Gladwell, and R. W. Brankin, Reliable solution of special event location problems for ODEs, ACM Transactions on Mathematical Software, vol.17, issue.1, pp.11-25, 1987.
DOI : 10.1145/103147.103149

T. Park and P. I. Barton, State event location in differential-algebraic models, ACM Transactions on Modeling and Computer Simulation, vol.6, issue.2, pp.137-165, 1996.
DOI : 10.1145/232807.232809

J. M. Esposito, V. Kumar, and G. J. Pappas, Accurate Event Detection for Simulating Hybrid Systems, HSCC, pp.204-217, 2001.
DOI : 10.1007/3-540-45351-2_19

M. Althoff, O. Stursberg, and M. Buss, Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization, 2008 47th IEEE Conference on Decision and Control, pp.4042-4048, 2008.
DOI : 10.1109/CDC.2008.4738704

C. Guernic and A. Girard, Reachability Analysis of Hybrid Systems Using Support Functions, Proceedings of CAV, pp.540-554, 2009.
DOI : 10.1007/s10009-007-0062-x

URL : https://hal.archives-ouvertes.fr/hal-00769527

G. Frehse and R. Ray, Flowpipe-Guard Intersection for Reachability Computations with Support Functions*, IFAC Conf. Analysis and Design of Hybrid Systems (ADHS), pp.94-101, 2012.
DOI : 10.3182/20120606-3-NL-3011.00053

D. Ishii, K. Ueda, and H. Hosobe, Simulation of hybrid systems based on hierarchical interval constraints, Proceedings of the Second International ICST Conference on Simulation Tools and Techniques, p.37, 2009.
DOI : 10.4108/ICST.SIMUTOOLS2009.5640

M. Ma¨?gama¨?ga, N. Ramdani, and L. Travé-massuyès, A fast method for solving guard set intersection in nonlinear hybrid reachability, IEEE CDC, pp.508-513, 2013.

N. Nedialkov, K. Jackson, and G. Corliss, Validated solutions of initial value problems for ordinary differential equations, Applied Mathematics and Computation, vol.105, issue.1, pp.21-68, 1999.
DOI : 10.1016/S0096-3003(98)10083-8

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis: with examples in parameter and state estimation, robust control and robotics, 2001.
DOI : 10.1007/978-1-4471-0249-6

URL : https://hal.archives-ouvertes.fr/hal-00845131

G. Barequet and S. Har-peled, Efficiently Approximating the Minimum-Volume Bounding Box of a Point Set in Three Dimensions, Journal of Algorithms, vol.38, issue.1, pp.91-109, 2001.
DOI : 10.1006/jagm.2000.1127

J. O. Rourke, Finding minimal enclosing boxes, International Journal of Computer & Information Sciences, vol.24, issue.1, pp.183-199, 1985.
DOI : 10.1007/BF00991005

F. Vivien and N. Wicker, Minimal enclosing parallelepiped in 3D, Computational Geometry, vol.29, issue.3, pp.177-190, 2004.
DOI : 10.1016/j.comgeo.2004.01.009

URL : https://hal.archives-ouvertes.fr/inria-00071901

M. Althoff, Reachability analysis and its application to the safety assessment of autonomous cars, 2010.

L. J. Guibas, A. Nguyen, and L. Zhang, Zonotopes as bounding volumes, ACM-SIAM Symposium on Discrete Algorithms, 2003.

O. Stursberg and B. Krogh, Efficient Representation and Computation of Reachable Sets for Hybrid Systems, HSCC, ser, pp.482-497, 2003.
DOI : 10.1007/3-540-36580-X_35

M. Ma¨?gama¨?ga, C. Combastel, N. Ramdani, and L. Travé-massuyès, Nonlinear hybrid reachability using set integration and zonotope enclosures, ECC, pp.234-239, 2014.

G. Chabert and L. Jaulin, Contractor programming, Artificial Intelligence, vol.173, issue.11, pp.1079-1100, 2009.
DOI : 10.1016/j.artint.2009.03.002

URL : https://hal.archives-ouvertes.fr/hal-00428957

T. Alamo, J. Bravo, and E. Camacho, Guaranteed state estimation by zonotopes, Automatica, vol.41, issue.6, pp.1035-1043, 2005.
DOI : 10.1016/j.automatica.2004.12.008

URL : https://hal.archives-ouvertes.fr/hal-00632977

A. Lalami and C. Combastel, A state bounding algorithm for linear systems with bounded input and bounded slew-rate, European Control Conference, 2007.

W. Kühn, Rigorously computed orbits of dynamical systems without the wrapping effect, Computing, vol.66, issue.Suppl, pp.47-67, 1998.
DOI : 10.1007/978-1-4613-8431-1

G. M. Ziegler, Lectures on polytopes, 1995.
DOI : 10.1007/978-1-4613-8431-1

H. Tuy, Handbook of global optimization, D.C. Optimization: Theory, Methods and Algorithms, pp.149-216, 1995.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Transactions on Mathematical Software, vol.22, issue.4, pp.469-483, 1996.
DOI : 10.1145/235815.235821

M. B. Elowitz and S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature, vol.81, issue.6767, pp.335-338, 2000.
DOI : 10.1021/j100540a008