D. E. Anderson, M. L. Madigan, and M. A. Nussbaum, Maximum voluntary joint torque as a 353 function of joint angle and angular velocity: Model development and application to the lower limb, p.354, 2007.

L. Ansley and P. Cangley, Determinants of ???optimal??? cadence during cycling, European Journal of Sport Science, vol.46, issue.2, pp.61-85, 2009.
DOI : 10.1046/j.1365-201x.1999.00589.x

M. Begon, T. Monnet, and P. Lacouture, Effects of movement for estimating the hip joint centre, Gait & Posture, vol.25, issue.3, p.360, 2007.
DOI : 10.1016/j.gaitpost.2006.04.010

URL : https://hal.archives-ouvertes.fr/hal-00240709

W. Bertucci, F. Grappe, A. Girard, A. Betik, and J. D. Rouillon, Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling, Journal of Biomechanics, vol.38, issue.5, pp.1003-1010, 2005.
DOI : 10.1016/j.jbiomech.2004.05.037

R. Bini, P. A. Hume, and J. L. Croft, Effects of Bicycle Saddle Height on Knee Injury Risk and Cycling Performance, Sports Medicine, vol.23, issue.5, pp.463-476, 2011.
DOI : 10.1016/0021-9290(90)90304-L

E. Bressel and B. J. Larson, Bicycle Seat Designs and Their Effect on Pelvic Angle, Trunk Angle, and Comfort, Medicine & Science in Sports & Exercise, vol.35, issue.2, pp.327-332, 2003.
DOI : 10.1249/01.MSS.0000048830.22964.7c

E. Bressel, D. Nash, and D. Dolny, Association between Attributes of a Cyclist and Bicycle Seat 380, 2010.

F. P. Carpes, F. Dagnese, J. F. Kleinpaul, E. Martins, A. De et al., Bicycle Saddle 386, 2009.

E. F. Coyle, M. E. Feltner, S. A. Kautz, M. T. Hamilton, S. J. Montain et al., Physiological and biomechanical factors associated with elite endurance 390 cycling performance, Med. Sci. Sports Exerc, vol.23, pp.93-107, 1991.

P. Debraux, F. Grappe, A. V. Manolova, and W. Bertucci, Aerodynamic drag in cycling: methods of assessment, Sports Biomechanics, vol.62, issue.3, pp.197-218, 2011.
DOI : 10.1080/00140137108931261

D. Vey-mestdagh and K. , Personal perspective, Applied Ergonomics, vol.29, issue.5, p.403, 1998.
DOI : 10.1016/S0003-6870(97)00080-X

S. Duc, W. Bertucci, J. N. Pernin, and F. Grappe, Muscular activity during uphill cycling: Effect of slope, posture, hand grip position and constrained bicycle lateral sways, Journal of Electromyography and Kinesiology, vol.18, issue.1, p.407, 2008.
DOI : 10.1016/j.jelekin.2006.09.007

L. M. Edwards, S. A. Jobson, S. R. George, S. H. Day, and A. M. Nevill, Whole-body efficiency is negatively correlated with minimum torque per duty cycle in trained cyclists, Journal of Sports Sciences, vol.26, issue.4, pp.319-325, 2009.
DOI : 10.1007/s00421-005-0077-5

R. M. Ehrig, W. R. Taylor, G. N. Duda, and M. O. Heller, A survey of formal methods for determining the centre of rotation of ball joints, Journal of Biomechanics, vol.39, issue.15, pp.2798-2809, 2006.
DOI : 10.1016/j.jbiomech.2005.10.002

H. Gonzalez and M. L. Hull, Multivariable optimization of cycling biomechanics, J. Biomech, vol.417, pp.22-1151, 1989.

E. A. Hansen and H. Waldeland, Seated versus standing position for maximization of performance during intense uphill cycling, Journal of Sports Sciences, vol.24, issue.9, pp.977-984, 2008.
DOI : 10.1139/h96-013

F. Hug, N. A. Turpin, A. Couturier, and S. Dorel, Consistency of muscle synergies during pedaling across different mechanical constraints, Journal of Neurophysiology, vol.106, issue.1, pp.91-103, 2011.
DOI : 10.1152/jn.01096.2010

T. Korff, L. M. Romer, I. Mayhew, and J. C. Martin, Effect of Pedaling Technique on Mechanical Effectiveness and Efficiency in Cyclists, Medicine & Science in Sports & Exercise, vol.39, issue.6, pp.991-995, 2007.
DOI : 10.1249/mss.0b013e318043a235

L. Li and G. E. Caldwell, Muscle coordination in cycling: effect of surface incline and posture, p.433, 1998.

B. D. Lowe, S. M. Schrader, and M. J. Breitenstein, Effect of Bicycle Saddle Designs on the Pressure to the Perineum of the Bicyclist, Medicine & Science in Sports & Exercise, vol.36, issue.6, pp.1055-1062, 2004.
DOI : 10.1249/01.MSS.0000128248.40501.73

A. Lucía, J. Hoyos, and J. L. Chicharro, Preferred pedalling cadence in professional cycling, p.439, 2001.

J. Mcdaniel, N. S. Behjani, S. J. Elmer, N. A. Brown, and J. C. Martin, Joint-Specific Power-Pedaling Rate Relationships during Maximal Cycling, Journal of Applied Biomechanics, vol.30, issue.3, pp.423-430, 2014.
DOI : 10.1123/jab.2013-0246

J. Mcdaniel, A. Subudhi, and J. C. Martin, Torso Stabilization Reduces the Metabolic Cost of Producing Cycling Power, Canadian Journal of Applied Physiology, vol.83, issue.4, pp.433-441, 2005.
DOI : 10.1007/BF01746509

G. P. Millet, C. Tronche, N. Fuster, and R. Candau, Level ground and uphill cycling efficiency in seated and standing positions, Medicine & Science in Sports & Exercise, vol.34, issue.10, pp.1645-1652, 2002.
DOI : 10.1097/00005768-200210000-00017

G. P. Millet, C. Tronche, and F. Grappe, Accuracy of Indirect Estimation of Power Output from Uphill Performance in Cycling, International Journal of Sports Physiology and Performance, vol.9, issue.5, pp.777-82, 2014.
DOI : 10.1123/ijspp.2013-0320

E. Poirier, M. Do, and B. Watier, Le passage de??la??posture classique ????la??posture en??danseuse par??le??cycliste r??pond-il ????une??recherche de??minimisation de??l'effort musculaire?, Science & Sports, vol.22, issue.5, pp.190-195, 2007.
DOI : 10.1016/j.scispo.2007.08.002

R. F. Reiser, J. M. Maines, J. C. Eisenmann, and J. G. Wilkinson, Standing and seated 460, 2002.

T. W. Ryschon and J. Stray-gundersen, The effect of body position on the energy cost of cycling, Medicine & Science in Sports & Exercise, vol.23, issue.8, p.464, 1991.
DOI : 10.1249/00005768-199108000-00011

C. Stone and M. L. Hull, The effect of rider weight on rider-induced loads during common cycling situations, Journal of Biomechanics, vol.28, issue.4, pp.365-375, 1995.
DOI : 10.1016/0021-9290(94)00102-A

H. Tanaka, D. R. Bassett, . Jr, S. K. Best, K. R. Baker et al., Seated versus standing cycling in 470 competitive road cyclists: uphill climbing and maximal oxygen uptake 472 FIGURE 1 ? Experimental protocol to determine the sit-1 to-stand transition power (SSTP) 483 SSTP was considered as the CPO at which the participants rose from the saddle during at 484 least 10 s. 485 486 FIGURE 2 ? 3D force and moment sensors. A. Pedal. B. Saddle Tube. C. Handlebars. 487 488 FIGURE 3 ? Theoretical model of the cyclist. For clarity only one side of the body is 489 represented. Red arrows represent external forces (saddle, pedals and handlebars), and 490 dashed red arrows represent reaction forces applied on the trunk at the hip and shoulder 491 levels calculated by inverse dynamics. Only the vertical components of these forces are 492 represented. White dots represent kinematic markers. Black dots represent joint centers 493 calculated using the SCoRE method. 494 495 FIGURE 4 ? Illustration of the mean saddle vertical reaction force and mean sum of forces 496 applied on the trunk (presented in Equation 1) patterns for all participants (n = 25) for CPO 497 = 20% of SSTP. 498 499 FIGURE 5 ? Vertical reaction force patterns presented along the crank cycle corresponding 500 to the minimum saddle vertical reaction force recorded for each CPO. Mean lefts (red line) 501 and rights (blue line) are presented ± one standard deviation. Data normalized by body-mass. 502 A. Saddle. B. Mass time acceleration of the trunk's center-of-mass, Shoulders. D. 503 Hips. 504 505 FIGURE 6 ? Evolution of the vertical reaction forces across CPOs. Diamonds: saddle vertical 506 reaction forces. Squares: product between the mass of the trunk and the acceleration of its 507 center of mass. Triangles: sum of the two hip vertical reaction forces. White circles: sum of 508 the two shoulder vertical reaction forces. Black dots: weight of the 26 head and trunk. Each 509 data point corresponds to the instantaneous vertical force observed while the saddle vertical 510 force was minimal. Positive values indicate upward reaction forces (except for the trunk's 511 weight, pp.471-149, 1996.