B. Armstrong and B. Amin, PID control in the presence of static friction: A comparison of algebraic and describing function analysis, Automatica, vol.32, issue.5, pp.679-692, 1996.
DOI : 10.1016/0005-1098(95)00199-9

B. Armstrong-hélouvry and B. Amin, PID control in the presence of static friction, 1993.

K. J. Aström and C. Canudas-de-wit, Revisiting the LuGre friction model, IEEE Control Systems, vol.28, issue.6, pp.101-114, 2008.
DOI : 10.1109/MCS.2008.929425

N. Barahanov and R. Ortega, Necessary and sufficient conditions for passivity of the LuGre friction model, IEEE Transactions on Automatic Control, vol.45, issue.4, pp.830-832, 2000.
DOI : 10.1109/9.847131

P. Bliman and M. Sorine, Easy-to-use realistic dry friction models for automatic control, Proceedings of 3rd European Control Conference, pp.267-272, 1995.

C. Canudas-de-wit, H. Olsson, K. J. Aström, and P. Lischinsky, A new model for control of systems with friction, IEEE Transactions on Automatic Control, vol.40, issue.3, pp.419-425, 1995.
DOI : 10.1109/9.376053

F. H. Clarke, Optimization and nonsmooth analysis, SIAM, vol.5, 1990.
DOI : 10.1137/1.9781611971309

P. R. Dahl, A solid friction model The Aerospace Corporation El Segundo CA, Tech. Rep, 1968.

A. F. Filippov, Differential equations with discontinuous righthand sides: control systems, 1988.
DOI : 10.1007/978-94-015-7793-9

R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: modeling, stability, and robustness, 2012.

J. W. Hagood and B. S. Thomson, Recovering a Function from a Dini Derivative, The American Mathematical Monthly, vol.6, issue.1, pp.34-46, 2006.
DOI : 10.4153/CJM-1968-010-5

R. I. Leine, N. Van-de-wouw, H. Olsson, K. J. Aström, C. Canudas-de-wit et al., Stability and convergence of mechanical systems with unilateral constraints Friction models and friction compensation, Science & Business Media, pp.176-195, 1998.

D. Putra, H. Nijmeijer, and N. Van-de-wouw, Analysis of undercompensation and overcompensation of friction in 1DOF mechanical systems, Automatica, vol.43, issue.8, pp.1387-1394, 2007.
DOI : 10.1016/j.automatica.2007.01.021

R. T. Rockafellar, R. J. Wets, and E. P. Ryan, Variational analysis An integral invariance principle for differential inclusions with applications in adaptive control, Science & Business Media SIAM Journal on Control and Optimization, vol.317, issue.36 3, pp.960-980, 1998.

E. D. Sontag, Further facts about input to state stabilization, IEEE Transactions on Automatic Control, vol.35, issue.4, pp.473-476, 1990.
DOI : 10.1109/9.52307

URL : http://www.math.rutgers.edu/~sontag/FTP_DIR/further-iss90.ps.gz

D. E. Stewart, Rigid-Body Dynamics with Friction and Impact, SIAM Review, vol.42, issue.1, pp.3-39, 2000.
DOI : 10.1137/S0036144599360110

URL : https://hal.archives-ouvertes.fr/hal-01570533

J. Swevers, F. Al-bender, C. G. Ganseman, and T. Projogo, An integrated friction model structure with improved presliding behavior for accurate friction compensation, IEEE Transactions on Automatic Control, vol.45, issue.4, pp.675-686, 2000.
DOI : 10.1109/9.847103

N. Van-de-wouw and R. I. Leine, Attractivity of Equilibrium Sets of Systems with Dry Friction, Nonlinear Dynamics, vol.35, issue.1, pp.19-39, 2004.
DOI : 10.1023/B:NODY.0000017482.61599.86

A. Visintin, Differential models of hysteresis, 1994.
DOI : 10.1007/978-3-662-11557-2

V. A. Yakubovich, G. A. Leonov, and A. K. Gelig, Stability of stationary sets in control systems with discontinuous nonlinearities, World Scientific, vol.14, 2004.
DOI : 10.1142/5442