
HAL Id: hal-01703317
https://laas.hal.science/hal-01703317

Submitted on 7 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Requirements Engineering to UML using Natural
Language Processing – Survey Study

Omer Salih Dawood, Abd-El-Kader Sahraoui

To cite this version:
Omer Salih Dawood, Abd-El-Kader Sahraoui. From Requirements Engineering to UML using Natural
Language Processing – Survey Study . European Journal of Industrial Engineering, 2017, 2 (1), pp.44-
50. �10.24018/ejers.2017.2.1.236�. �hal-01703317�

https://laas.hal.science/hal-01703317
https://hal.archives-ouvertes.fr

1

Abstract— In the paper process of moving from
software requirements to Unified Modeling Language (UML)
diagrams has been studied. It shows the importance of this
process and discusses many comparative studies in the field. A
questionnaire related to the study was distributed worldwide to
many research groups, academia, and industry to know the
current status of using requirement management tools,
knowledge of using UML in software development, frequently
used UML diagrams, and the methodology used to generate
UML diagrams from requirements. The paper emphasises that
there is a need to do some important research in the area of
requirements Natural Language processing (NLP) to obtain
UML diagrams, and generalize process of using automatic or
semi-automatic methodology to generate UML diagrams from
requirements.

A. Index Terms— Requirement Engineering, Traceability,
Requirements Management Tool, NLP, UML

I. INTRODUCTION
Requirements engineering is first step towards

software development life cycle. It’s aimed to collect and
document requirements to be used in next steps. Bad
collections and managing of requirement leads to software
project failure or delivering projects on late. Success rate of
software project is only 28% [21] .Many IT projects fail or
are not delivered on time because of the lack of good
requirements attributes. Handling the errors and problem
earlier, better than handling it later and at low cost,
requirements engineering is a challenge because of its
critical steps and more work is needed to be done in research
like documentation, verification and validation, traceability,
and automatic moving from requirements to design step . To
ensure that the requirements are properly taken into account,
we need to trace these requirements to next steps that use
these requirements. Another issue is generation of design
from requirements, while preparing SRS document and
moving to the next steps, some requirements are missed or
not taken into account. Missing some requirements leads to
customer dissatisfaction and incomplete product and this
may take extra cost and time. The paper is consisted of the

Published on January 1, 2017. The authors are:

1- Omer Salih Dawood is researcher in Sudan University of Science and
Technology, Khartum, Sudan, and full time lecturer in Computer
Science, College of Arts, Prince Sattam bin Abdulaziz University,
KSA. Email: omercomail@gmail.com

2- Abd-El-Kader Sahraoui is professor in LAAS-CNRS, Université de
Toulouse, CNRS, UT2J, Toulouse, France

following sections. This section introduces the concepts of
UML, Requirements Engineering, natural language
processing and software engineering, and introduces the
need of research in the area of generating diagrams from
requirements. Section 2 concludes and compares the
research work in the area of TEXT to UML, and introduces
requirements management tool. Section 3 explain the
Survey Study, and section 4 Discuss the survey results.

A. Unified Modelling Language (UML)
UML is de facto standard for modeling of software.

Object Management Group (OMG) was standardized UML
in 1997 [16]. It is unification of three methods Booch, OMT,
and OOSE.

According to [17] the UML has much type of
diagrams, use case diagrams, and behavioral diagrams
which include state diagram, activity diagram, sequence
diagram, and collaboration diagram, and the other one is
static diagrams like class diagram. It’s a language for
specifying, visualizing, constructing and documenting
software systems. It’s not just modeling software, many
domains can be modeled UML like System Engineering,
Process Modeling, and representing the organizational
structures [18].

B. Requirements Engineering:
 According to SEI Requirements engineering

confirms systematical and repeatable using of techniques
ensure the completeness, consistency, and relevance of the
system requirements [19]. It’s very complex process
because it involves the requester, developer, and author. The
requesters know what they want but they don't know how to
develop a system, while developer knows how to develop a
system but they don't know what is the problem, the author
tries to minimize communication gabs between requester
and developer[19].There are two types of requirements, as
follows:
1- User requirements: describe the services expected from

system and constraints that the system should follow. It
must be written in statements that the non-technical
person can understand [20].

2- System requirements: describe more and deep 2details
of user requirements. Software engineers analyze these
requirements to know what exactly implement in the
system. System requirements include both functional
and non-functional requirements [20].

From Requirements Engineering to UML using Natural
Language Processing – Survey Study

Omer Salih Dawood1 and Abd-El-Kader Sahraoui2
1 Sudan University of Science and Technology, Khartum, Sudan

1 Computer Science, College of Arts, Prince Sattam bin Abdulaziz University, KSA
2 LAAS-CNRS, Université de Toulouse, CNRS, UT2J, Toulouse, France

1omercomail@gmail.com

2

1. Figure (1): Requirements Engineering Process

c. Natural Language Processing and Software

Engineering
NLP is processing of human natural language automatically
or semi-automatic. NLP is essentially multidisciplinary and
related with linguistics[22].NLP and SE are both, the
branches of computer science. In Software Development
Life Cycle can be applied to every phase. There are textual
artefacts in analysis and design phases like Requirement
Document and Software Design Specification. Quality
attributes like performance, feature, reliability, aesthetics,
and perception are need to be assessed in NLP software
[14]. Most of the requirements are written in natural
language text and this causes many issues like ambiguity,
specification issues, and incompleteness. These requirement
statements need to be analysed then we need to use natural
language processing for that purpose because NLP provides
many tools which help in linguistic analysis and helps in
automated assistance [15]. Using NLP in RE is important
because the requirement specification is written in
cooperation between software house analyst and users and
customers, and the customers will not sign contract if
requirements are written in formal language[15].

II. UML GENERATION FROM REQUIREMENTS USING NLP

 Priyanka and Rashmi [1] developed a tool for UML
diagrams generation from requirements using NLP. The tool
is known as (RAPID), which is used to analyse textual
requirements, finding core concepts and its relationships,
and finally generate UML diagram [1].

RAPID Consists of OpenNLP parser, RACE stemming
algorithm, and Word Net, Domain Ontology module is used
to improve the performance of concepts identification and
Class Extraction Engine module receives the output of
“concept extraction engine” module and applies different
heuristic rules to generate both classes, relationship, and
attributes[1].

Deva and Muhammad [2] developed a tool named as
UML Model Generator from Analysis of Requirements
(UMGAR) used to generate UML models from
requirements using NLP tools , generated UML models like
the Use-case Diagram, Analysis class model, Collaboration
diagram and Design class model. They combined both
Rational Unified Process (RUP) to specify objects, and

ICONIX process that uses most a good NLP tools. There are
two main components that composed UMGAR process
architecture as follows:
2. Normalizing requirements component (NLP Tool

Layer), used to identify requirements ambiguity and
incompleteness and It consists of many sub
components including Syntactic Reconstruction sub
component uses 8 syntactic reconstruction rules.

3. Model Generator component used to generates many
OO models from normalized requirements consists of
Use-case Model Developer, and class model analysis
and class model developer.

Andres and et al [3] developed a new approach and tool
that interpret, organize, and manage requirements through
application-specific ontologies and natural language
processing. They used tool known as Natural Language
Toolkit (NLTK) .The tool receives raw requirement text and
performs segmentation to the entered text to obtain
sentences, after that text will enter to tokenization process to
tokenize text into words or punctuation character and
normalize these tokens through stemming process, then
perform par of speech tagging to identify the role of each
word, entities can identify On top of POS tagging, then
identify group tokens specially parsed words that represent
the entity through chunking process, and finally recognize
requirements[3]. NURI and et al [4] develop an approach to
generate behavioral diagrams from user requirements they
focused on both use case diagram and activity diagram. The
developed tool named as RETRANS (REquirement
TRANSformation). The approach receives the requirement
and performs POS using Stanford POS Tagger, after that
there are phases as follows:
Phase 1: requirement phase, first Phase is requirements
keywords tracking used to detect the actor and use cases for
the requirement. Phase 2: Use Case Diagram generation, the
use case diagram library is used to generate use case
diagram by connecting actors with related use case. Phase 3:
Activity Diagram generation, after use case generation. The
system automatically specifies all use cases that involved
in the use case diagram, then it will generate the activity
diagram by linking the components inside the class library
(activity).
Prasanth Nakul[5] addresses the interdisciplinary between
software engineering and natural language processing, and
proposed methodology known as TextToUml to produce
high-quality UML diagrams. The methodology consists of
five diagrams as follows:
1- Define N.L. text quality parameters, and this includes

classifying text to controlled language and uncontrolled
language.

2- Identify level of noise and complexity of the text and
classify sentences into simple, semi-complex, and
complex.

3- Identify the type of diagram according to the
description given in the text.

4- Determine UML diagram specification.
5- Derive UML specification with N.L text tuning to all

available UML diagrams.
6- To generate UML diagrams, build interface between the

ontology and application [5]
In [6] S.G. MacDonell and et al developed architecture of an
autonomous requirements specification by using a natural
language processing (NLP). They focused on the
verification of requirements specification analysis.

3

Figure (2): System architecture

As shown in figure (2) the system architecture consists of
three modules as follows:
1- Tokeniser – reads requirements from a document
2- Parser - parses requirements sentence to extracts all

unique noun terms.
3- Term management system – used to filter unimportant

terms, classify remaining terms (function, entity, or
attribute), and insert the object into a project
knowledge base.

Subhash and et al [7] built a tool that analyzes requirement
texts and builds model of the processed text represented in
the semantic network. Their tool consists of two modules,
NL analysis and diagram & code generation [7].In the first
module POS tagging is used to analyze and classify tokens,
then the text understanding categorizes text into more
further classes, as object, messages, verb, and etc to
facilitate class generation process, Knowledge extraction
module receives the output of previous phases to extract
classes, attributes, and actors. Finally the UML diagrams
will be generated. Based on generated UML diagrams, and
extracted knowledge Second module generates code in
language like java.
In Deva and Ratna [8] proposed a tool named as Static UML
Model Generator from Analysis of Requirements (SUGAR)
to produce static UML models from natural language. The
SUGAR receives requirement texts and split complex
sentences into simple sentences using syntactic
reconstruction rules, then parse requirement document and
generate parse tree by using Stanford Parser which the
subjects and predicates are identified, actors mostly are
subjects, and use cases are mostly the predicates, then
identify the relationships between use cases and actors, then
draw use case diagram. Class diagram can be generated by
using the previous items and identify classes, methods,
attributes, and relationships. Yasaman and et al [9]
automated the process of generating package diagram in
software design to facilitate design process and because
process of moving from requirements engineering to design
done by ad-hoc way. There are three components, first is
static view generator - static ontology used to generate
knowledge about the system. In the static ontology, classes
with similar functionalities are grouped together. Second is
dynamic view generator - dynamic view of ontology shows
the interactions between the systems. Third is package
diagram recommender that is used to receive the output of
static and dynamic ontology generator to generate package
diagram. A hierarchal clustering algorithm was used as core
of packing solution. The classes are grouped together in
same packages if they have higher number of
communications and similar communication pattern
between them [9].
Vibhu and et al [10] proposed a technique to generate high
level class diagram from requirements, they implemented
the approach into Functional Design Creation Tool (FDCT).
They used heuristic rules and domain specific glossary to
create the design. They developed Requirements Analysis
Tool (RAT) that were used for restricts the requirement

sentence, and perform lexical and semantic analysis on
requirement document. RAT classifies requirements into six
types which cover set of wide rage application requirement
types. There are three phases approach for RAT to analyze
requirements, in the first phase, requirements statement
convert into a set of tokens with the user help to define
glossaries. In the second phase the state machines are used
for analysis of the requirement statements' syntax [10]. The
third phase consists of semantic analysis with the help of
domain specific ontology [10]. Sarita and Tanupriya [11]
proposed an algorithm to automatically generate UML
diagrams from user requirements after receiving
requirements text, the text is tokenized and Pos tagger is
used to perform lexical tagging, then extract verbs and
objects as an activity, finally generate activity diagram.
To generate sequence diagram, after receiving requirements
the plain text file is pre-processed, then the parser defines
the structure of sentence [11]
Imran and et al [12] developed architecture to generate
UML class diagram as in figure (3)

Figure(3):Architecture of the designed system[12]
The architecture receives the requirements in text form and
tokens the text, POS tagging receives the tokens to specify
Nouns, adjectives, etc, after that the text understanding
module specifies subjects, objects, etc, then knowledge
extraction specifies objects, methods, attributes, etc, then the
class diagram is generated and the code also can be
generated with many languages in the last module[12].
Richa and et al [13] developed method to generate UML
activity diagram, and sequence diagram they based their
works on structured representation of requirements
statements known as frame then using representation to
generate activity and sequence diagrams. Requirements
statements categorization is based on Grammatical
Knowledge Patterns (English linguistics with the objective
of understanding semantics of statements and extracting
useful information) into Single category: Active or Passive
voice, and Multiple categories: passive or active with one or

4

more (Conjunction, Preposition, Precondition and
Marker).There are four types of frame structure, active,
passive, Conjunction between verbs with Passive Voice, and

Preposition. The requirement statement is tokenized and
belongs to specific frame, then the object, action,
relationships can be identified [13].

TABLE I: Comparison Table
Study Generated Diagrams Main Components Strengths Weaknesses

[1] Class diagram RAPID Concept Extraction Engine+
RAPID Class Extraction Engine +
some small components

Deeply shows the details of class
elements generation

Didn't generate class code + only
concentrates in one diagram generation

[2] use-case + analysis
class
models+
collaboration
diagram

Normalizing requirements
component+ Model Generator
component

Generates three UML diagrams Need some additives to generate more
diagrams

[3] Class Diagram Segmentation+ Tokenization + POS
+ entity and relation recognition

Uses ontology to assist in
diagram generation and good in
identifying relationships

Only class diagram generation without
code. Needs some additives to cover
many diagrams.

[4] Use case and
Activity diagram

NLP + use case library + activity
diagram library

Generate dynamic diagrams Some enhances are needed to generate
more diagrams

[5] Not specified Many steps in algorithm General diagram generation Didn't show practical work
[6] Class diagram NLP tool + Term

Management
System

Extract complex sentence One diagram is few, need to generate
more

[7] class diagram Natural Language Analysis Block+
Diagrams & Code Generation Block

Generate both static and
dynamic diagrams - use case and
class diagram and java class
code

Some enhances are needed to generate
more static and dynamic diagrams

[8] Usecase di- agram +
class diagram

Use-case Model Generator + Class
Model Generator

Generate both static and
dynamic diagrams - use case and
class diagram and java class
code

Some enhances are needed to generate
more diagrams

[9] Generate package
diagram

Static Ontology
Generator + Dynamic Ontology
Generator

Using ontology and Good in
grouping classes together

One diagram is few, need to generate
more

[10] class diagram RAT + Tokens + heuristic rules +
UML creator module

Generate a high-level class
diagram in a good methodology

One diagram is few, need to generate
more+didn't generate classes code

[11] Activity diagram +
sequence diagram

Activity: Sentence splitter + POS
tagger + verb and object extractor.
Sequence: pre-processing + parser +
additional information identifier +
adding conditions

Generation both activity and
sequence diagrams in good
manner

Concentrates only in some dynamic
diagram

[12] Class diagram Natural Language Analysis
Block[POS tagging + Text
Understanding]+Knowledge
Extraction +Diagram
and Code Generation Block [UML
diagrams]+ Code Generation

Generate UML class diagram in
a good way with class’s code.

Only one static class diagrams are
generated, need more enhancement to
generate more classes

[13] Activity diagram +
sequence diagram

Stanford POS tagger + Frame
structure(Active Voice, Passive
Voice, Conjunction between Verbs
with Passive Voice, and Preposition)

Classify statements into simple
and complex statements. Frame
is a good idea to generate both
activity and sequence diagram

They assume that no redundancy and
ambiguity. Need some enhancement to
cover more diagrams

III. METHODOLOGY :
The research aimed to improve the process of generating
UML diagrams from requirements, many related work are
reviewed firstly to specify the weaknesses and what is the
problem in this area, to know the range of using
requirements in organized way and how the organizations
generate UML from requirements, to know all these a
Questionnaire was developed by consulting many computer
science professors and distributed worldwide to many IT
companies, universities, and research groups to ensure the
questionnaire covers wide range, and allow to obtain good
and common result. Both academia and industry that related
with software and system engineering filled the
questionnaire, we expected more than 100 persons will fill
the questionnaire but only around 92 persons filled the
questionnaire, and good results obtained and the research
achieve the objectives. The questionnaire was distributed
and filled during the period from 01 November to 01
December 2016. The questionnaire has many sections each

one concentrates to specific questions, there is section to
now the usage of requirement management tools, section to
know the preferences of UML diagrams generations from
requirements, section to know most UML diagrams used

This questionnaire aims to answer the following questions:
1. What is familiarity of Formal methods, SADT

(Structured Analysis and Design Technique), and
OMT (Object Modelling Technique)?

2. Do the organizations\system engineers use a
systematic way to gather and document requirements
and familiarity in using requirements management
tool?

3. How organizations\system engineers generate UML
diagrams from requirements?

4. Are organizations\system engineers need
tools/techniques that facilitate the process of moving
from requirements engineering stage to software
design stage?

5. The order of using UML diagrams - what is most used
and needed UML diagrams.

5

IV. RESULTS AND DISCUSSIONS
The questionnaire was distributed worldwide and filled by
92 respondents from academia, industry, or both we found
that around 25% weren't familiar with Formal methods,
SADT (Structured Analysis and Design Technique), and
OMT (Object Modelling Technique), and around 75%
familiar with one or more from these concepts. There are
92% familiar with basic UML concepts. The survey found
that 69% is using a systematic methodology for collecting
requirements, while 31% collect requirements without
systematic methodology, and around 67% of the
organizations follow Software Development Life Cycle to
develop systems. Regarding knowledge of using
requirement management tools we found that 17.8% has
strong knowledge, while 45.6% has medium knowledge,
and 36.7 has poor knowledge. This means that there is need
to encourage the organizations\system engineers to use
requirement management tools. It is very important to
generate UML diagrams from requirements by aiding of tool
to ensure all requirements are covered into design then
obtain high quality software, as shown in figure (4), 40.2%
organizations\system engineers generate UML diagrams
manually, while 23.9% generate UML diagrams by semi-
automatic methodology, 13% generate UML diagrams by
automatic method, and 22.8% didn't generate UML
diagrams from requirements. Manual process of generation
of UML from requirements needs some enhancement to
become automatic or semi-automatic

Figure (4): Methodology of UML generation

UML has many types of diagrams each one has specific
role. Figure (4) shows the order of using UML diagrams, the
use case diagram, class diagram, sequence diagram, and
activity diagram has high percentage use respectively. It's
necessary to help generation of these diagrams according to
the order of usage.

Figure (5): percentage of using UML diagrams

V. CONCLUSION:
The paper reviewed the current status of using Natural

language processing in software engineering to process the
software requirements to generate UML diagrams. The
paper deeply studied many research in this area and made a
comparison between them and identified each weaknesses
and strength and scope for improvement.

A Questionnaire was distributed world wide about
using UML, requirement management tools, and how the
software engineers generate UML diagrams from
requirements. The main purpose of this questionnaire was to
enhance software quality and Minimize the design time,
cost, and error with reducing human intervention in the
design phase through improving the process of generating
UML diagrams from requirements using NLP.

We found that only around 13% of users/organizations
generate UML diagrams automatically and around 23.9
using semi-automatic way to generate UML diagrams, while
40.2% generate UML diagrams manually, and this means
that there is need to minimize this percentage by more
studies and enhancing in UML generation from
requirements automatically or semi automatic way.

REFERENCES
[1] More, Priyanka, and Rashmi Phalnikar. "Generating UML

Diagrams from Natural Language Specifications." International
Journal of Applied Information Systems, Foundation of
Computer Science 1.8 (2012).

[2] Deeptimahanti, Deva Kumar, and Muhammad Ali Babar. "An
automated tool for generating UML models from natural
language requirements." Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering.
IEEE Computer Society, 2009.

[3] Arellano, Andres, Edward Carney, and Mark A. Austin.
"Natural Language Processing of Textual Requirements." The
Tenth International Conference on Systems (ICONS 2015),
Barcelona, Spain. 2015.

[4] Kamarudin, Nuri Jazuli, Nor Fazlida Mohd Sani, and Rodziah
Atan. "AUTOMATED TRANSFORMATION APPROACH
FROM USER REQUIREMENT TO BEHAVIOR
DESIGN." Journal of Theoretical and Applied Information
Technology 81.1 (2015): 73.

[5] Yalla, Prasanth, and Nakul Sharma. "Utilizing NL Text for
Generating UML Diagrams." Proceedings of the International
Congress on Information and Communication Technology.
Springer Singapore, 2016.

6

[6] MacDonell, Stephen G., Kyongho Min, and Andy M. Connor.
"Autonomous requirements specification processing using
natural language processing." arXiv preprint
arXiv:1407.6099 (2014).

[7] Shinde, Subhash K., Varunakshi Bhojane, and Pranita Mahajan.
"Nlp based object oriented analysis and design from requirement
specification."International Journal of Computer
Applications 47.21 (2012).

[8] Deeptimahanti, Deva Kumar, and Ratna Sanyal. "An innovative
approach for generating static UML models from natural
language requirements."International Conference on Advanced
Software Engineering and Its Applications. Springer Berlin
Heidelberg, 2008.

[9] Amannejad, Yasaman, et al. "From requirements to software
design: An automated solution for
packaging software classes." Information Reuse and Integration
(IRI), 2014 IEEE 15th International Conference on. IEEE, 2014.

[10] Sharma, Vibhu Saujanya, et al. "Extracting high-level functional
design from software requirements." 2009 16th Asia-Pacific
Software Engineering Conference. IEEE, 2009.

[11] Gulia, Sarita, and Tanupriya Choudhury. "An efficient
automated design to generate UML diagram from Natural
Language Specifications." Cloud System and Big Data
Engineering (Confluence), 2016 6th International Conference.
IEEE, 2016.

[12] Bajwa, Imran Sarwar, Ali Samad, and Shahzad Mumtaz.
"Object oriented software modeling using NLP based
knowledge extraction." European Journal of Scientific
Research 35.01 (2009): 22-33.

[13] Sharma, Richa, Sarita Gulia, and K. K. Biswas. "Automated
generation of activity and sequence diagrams from natural
language requirements."Evaluation of Novel Approaches to
Software Engineering (ENASE), 2014 International Conference
on. IEEE, 2014.

[14] Yalla, Prasanth, and Nakul Sharma. "Integrating Natural
Language Processing and Software Engineering." International
Journal of Software Engineering and Its Applications 9.11
(2015): 127-136.

[15] Lash, Alex, Kevin Murray, and Gregory Mocko. "Natural
language processing applications in requirements
engineering." ASME 2012 International Design Engineering
Technical Conferences and Computers and Information in
Engineering Conference. American Society of Mechanical
Engineers, 2012.

[16] Hilliard, Rich. "Using the UML for architectural
description." International Conference on the Unified Modeling
Language. Springer Berlin Heidelberg, 1999.

[17] Yang, Kann-Jang, and Rob Pooley. "Process modelling to
support the Unified Modelling Language." Computer Software
and Applications Conference, 1997. COMPSAC'97.
Proceedings., The Twenty-First Annual International. IEEE,
1997.

[18] Fitsilis, Panos, Vassilis C. Gerogiannis, and Leonidas
Anthopoulos. "Role of unified modelling language in software
development in Greece?? results from an exploratory
study." IET Software 8.4 (2014): 143-153.

[19] SEI. (November 2016). A Framework for Software Product Line
Practice,available:
http://www.sei.cmu.edu/productlines/frame_report/req_eng.htm

[20] S. Guanda, “Requirements Engineering: elicitation techniques”
M.S. thesis, Dept. Technology, Math, and computer science,
Univ. of WEST , Sweden , 2008.

[21] Muqeem, Mohd, and Mohd Rizwan Beg. "Validation of
requirement elicitation framework using finite state
machine." Control, Instrumentation, Communication and
Computational Technologies (ICCICCT), 2014 International
Conference on. IEEE, 2014.

[22] Ann Copestake, “Natural Language Processing,” Lecture
Synopsis ,2004

	A. Index Terms— Requirement Engineering, Traceability, Requirements Management Tool, NLP, UML
	I. Introduction
	A. Unified Modelling Language (UML)
	B. Requirements Engineering:
	c. Natural Language Processing and Software Engineering

	II. UML generation from requirements using NLP
	III. Methodology :
	IV. Results and Discussions
	V. Conclusion:
	References

