I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys, vol.86, pp.153-185, 2014.

I. Bloch, J. Dalibard, and S. Nascimbene, Quantum simulations with ultracold quantum gases, Nat. Phys, vol.8, pp.267-276, 2012.

R. Blatt and C. F. Roos, Quantum simulations with trapped ions, Nat. Phys, vol.8, pp.277-277, 2012.

A. A. Houck, H. E. Tureci, and J. Koch, On-chip quantum simulation with superconducting circuits, Nat. Phys, vol.8, pp.292-299, 2012.

T. Byrnes, N. Y. Kim, K. Kusudo, and Y. Yamamoto, Quantum simulation of fermi-hubbard models in semiconductor quantum-dot arrays, Phys. Rev. B, vol.78, p.75320, 2008.

A. Singha, Two-dimensional mott-hubbard electrons in an artificial honeycomb lattice, Science, vol.332, pp.1176-1179, 2011.

P. Barthelemy and L. M. Vandersypen, Quantum dot systems: a versatile platform for quantum simulations, Ann. Phys, vol.525, pp.808-826, 2013.

A. Y. Kitaev, Unpaired majorana fermions in quantum wires, Phys.-Uspekhi, vol.44, p.131, 2001.

J. D. Sau and S. Das-sarma, Realizing a robust practical majorana chain in a quantum-dot-superconductor linear array, Nat. Commun, vol.3, p.964, 2012.

I. C. Fulga, A. Haim, A. R. Akhmerov, and Y. Oreg, Adaptive tuning of majorana fermions in a quantum dot chain, New J. Phys, vol.15, p.45020, 2013.

P. Zhang and F. Nori, Majorana bound states in a disordered quantum dot chain, New J. Phys, vol.18, p.43033, 2016.

A. Eichler, Even-odd effect in andreev transport through a carbon nanotube quantum dot, Phys. Rev. Lett, vol.99, p.126602, 2007.

A. Eichler, Tuning the josephson current in carbon nanotubes with the kondo effect, Phys. Rev. B, vol.79, p.161407, 2009.

R. S. Deacon, Tunneling spectroscopy of andreev energy levels in a quantum dot coupled to a superconductor, Phys. Rev. Lett, vol.104, p.76805, 2010.

J. Pillet, Andreev bound states in supercurrent-carrying carbon nanotubes revealed, Nat. Phys, vol.6, pp.965-969, 2010.

T. Dirks, Transport through andreev bound states in a graphene quantum dot, Nat. Phys, vol.7, pp.386-390, 2011.

W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nygård, and C. M. Marcus, Tunneling spectroscopy of quasiparticle bound states in a spinful josephson junction, Phys. Rev. Lett, vol.110, p.217005, 2013.

E. J. Lee, Spin-resolved andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures, Nat. Nanotechnol, vol.9, pp.79-84, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02083484

S. R. Plissard, From insb nanowires to nanocubes: Looking for the sweet spot, Nano Lett, vol.12, pp.1794-1798, 2012.

V. Mourik, Signatures of majorana fermions in hybrid superconductorsemiconductor nanowire devices, Science, vol.336, pp.1003-1007, 2012.

S. Nadj-perge, Observation of majorana fermions in ferromagnetic atomic chains on a superconductor, Science, vol.346, pp.602-607, 2014.

D. Aasen, Milestones toward majorana-based quantum computing, Phys. Rev. X, vol.6, p.31016, 2016.

D. Sherman, Normal, superconducting and topological regimes of hybrid double quantum dots, Nat. Nano, vol.12, pp.212-217, 2016.

T. Karzig, Scalable designs for quasiparticle-poisoning-protected topological quantum computation with majorana zero modes, Phys. Rev. B, vol.95, p.235305, 2017.

S. Plugge, A. Rasmussen, R. Egger, and K. Flensberg, Majorana box qubits, New J. Phys, vol.19, p.12001, 2017.

H. Zhang, Ballistic majorana nanowire devices, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01712989

G. Blonder, M. Tinkham, and T. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion, Phys. Rev. B, vol.25, pp.4515-4532, 1982.

S. Nadj-perge, Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires, Phys. Rev. Lett, vol.108, p.166801, 2012.

T. Meng, S. Florens, and P. Simon, Self-consistent description of andreev bound states in josephson quantum dot devices, Phys. Rev. B, vol.79, p.224521, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00985116

T. Hensgens, Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array, 2017.

W. Chang, Hard gap in epitaxial semiconductor-superconductor nanowires, Nat. Nano, vol.10, pp.232-236, 2015.

T. W. Larsen, Semiconductor-nanowire-based superconducting qubit, Phys. Rev. Lett, vol.115, p.127001, 2015.

J. Chen, Experimental phase diagram of a one-dimensional topological superconductor, 2016.