Self-Powered Adaptive Switched Architecture Storage for Ultra-Capacitors

Firdaous El Mahboubi, Marise Bafleur, Vincent Boitier, Jean-Marie Dilhac

To cite this version:

HAL Id: hal-01754705
https://hal.laas.fr/hal-01754705
Submitted on 11 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Self-Powered Adaptive Switched Architecture Storage for Ultra-Capacitors

Firdaous EL MAHBOUBI, Marise BAFLEUR, Vincent BOITIER, Jean Marie DILHAC
LAAS-CNRS, Université Toulouse, CNRS, INSA, UPS, Toulouse, France
felmahbo@laas.fr

OBJECTIVES
- Coupling energy harvesting & storage on supercapacitor (SC)
- Adaptive storage for early startup at charging (low capacitance value) and maximization of stored energy (high capacitance).
- Autonomy of the system and maximum energy usage rate.

Self-adaptive Architecture
The principle of this structure is to change the value of the total storage capacity according to the state of charge/discharge, to satisfy the objectives: fast charging time with a low capacitance $C_{eq}=C/N$ (series configuration), maximization of stored energy with $C_{eq}=C/N$ (parallel configuration).

Self-adaptive architectures under study
Each of the two types of adaptive structures consists of 4 identical supercapacitors (SC) + 9 switches + 3 Schottky diodes for structure B, allowing three possible configurations: Series (S), series-parallel (SP) and parallel (P), (The diodes allow a default serial structure).

Analysis of the two self-adaptives architectures
Both structures are identical, they have the same number of SCs, switches and configurations (S, SP, P). However, they differ in the SP configuration.

→ Impact of the dispersion in capacitance values on losses (worst case)

<table>
<thead>
<tr>
<th>Tolerance range</th>
<th>C=100mF±20%</th>
<th>Input</th>
<th>C1 (F)</th>
<th>C2 (F)</th>
<th>C3 (F)</th>
<th>C4 (F)</th>
<th>E_{MAX} loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure A</td>
<td>0.12</td>
<td>0.08</td>
<td>0.08</td>
<td>0.12</td>
<td>2.08%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure B</td>
<td>0.08</td>
<td>0.08</td>
<td>0.12</td>
<td>0.12</td>
<td>2.16%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Emax loss expressed in % of the stored energy

→ Balancing currents, simulation result of the worst case, High current in second switching SP→P (low current in first switching S→SP)

For these simulations, we model each switch by a resistor, and the ultra-capacitor by a capacitor in series with a resistor (C=100mF±20%, ESR=0.08Ω, $R_{load}=0.4Ω$).

Conclusion:
- Low losses → balancing circuit not necessary
- Structure B exhibits lower balancing currents

Self-powered and adaptive storage system

Experimental results
Energy harvester simulated by a Thévenin generator $E_{th}=5V$, $R_{load}=1kΩ$, $R_{load}=16Ω$, $C=100mF$, $C_{cap}=400mF$, $V_{th}=2V$, $V_{th}=1V$

Charge profile:
- The S configuration allows for a fast charging and startup (low Ceq).
- The P configuration allows for the storage of a large amount of energy (high Ceq).

Discharge profile:
The S configuration allows a maximum energy usage rate in the case of a system powered by an energy harvesting source.

Measurement and calculation of losses
Source and load modeled by a constant current source

Perspectives
Silicon integration of the self-powered and adaptive storage.

Acknowledgments
This work is carried out within the framework of the European project SMARTER funded by the CHIST-ERA program, "Green ICT, towards Zero Power ICT".