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Abstract

The stability of polymer-based sensors in a biological environment remains a challenge, as delamination and swelling often 
compromise mechanical and electrical capability. We have developed a neural implant based on Parylene C, a biocompatible 
flexible polymer, with PEDOT-nanostructured gold patterns to record the brain electrical activity. Here, we show first evidence 
of device biostability through in vitro soaking tests in artificial brain environment and in vivo recording in mice. Our results 
indicate that after over the six months trial, more than 75% of the in vitro electrodes have stable impedance, and the implanted 
sensors in mice were able to accurately record signals from mice hippocampi. None of the implants presented with signs of 
Parylene degradation or metal corrosion. Overall, the devices are promising candidates for reliable, chronically implanted sensors 
in the biomedical field.

© 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of the 30th Eurosensors Conference.
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1. Introduction

   Implantable flexible polymer-based sensors are expanding in the biomedical field, because they are able to adapt 
to the inherently soft tissues, promoting body acceptance in the long run. However, the body can be an aggressive 
environment for many types of materials and devices in contact with tissues or body fluids in the long term. Implant 
unstability stems either from the host response, that is the local and system response of the living systems to the 
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material, or from material response to said living systems [1]. Prolonged contact in physiological fluids tends to 
affect the device in the form of corrosion of electrical sites, membrane biofouling, swelling and delamination of the 
passivation layer [2]. In the case of chronically-implanted neuroprosthesis, implants must be able to record and/or 
stimulate neural tissues over long periods of time without adversely affecting body fluids, tissues and organs [3].
    Parylene C is a flexible, highly biocompatible polymer that has gained attention over the years in the biomedical 
field. Parylene C is currently investigated in thick layers (~20-25µm) as a flexible substrate for a wide range of 
biomedical devices, especially for neuroprosthetic applications [4], [5]. However, the biostability of Parylene-based 
devices still lacks crucial perspective. In order to achieve such hindsight, in vitro appropriate models and in vivo
accurate experiments need to be intensely pursued.
    We have developed a Parylene C-based neural probe with nanostructured gold electrodes to record the brain 
activity. In this study, we intend to demonstrate preliminary evidence of the biostability of our Parylene implant for 
chronic neural applications, via in vitro soaking tests in artificial brain environment and prolonged in vivo wireless 
recordings in mouse brain.

2. Materials and methods

2.1. Neuroprosthesis fabrication

    In previous studies, we conceived a flexible neuroprosthetic device made of Parylene C [5] (Fig 1a). This polymer 
presents with outstanding biocompatibility (USP Class VI), excellent chemical inertness and low Young’s modulus. 
The implant is patterned via lift-off with 40µm–diameter gold electrodes for the recording of neural activity. To 
improve signal quality, the electrodes are nanostructured with electrochemically-deposited conductive polymer 
PEDOT [6]. Because the probe as such tends to buckle on the surface of the brain during its implantation in the 
cortex, the shank is backed with a resorbable silk fibroin coating [7]. Silk fibroin acts as a stiff support that enables 
insertion in brain tissues, before degrading itself harmlessly at a tunable rate.

Fig 1. (a) Schematic representation (not 
to scale) and microscopic image (scale 
bar is 200 µm) of a Parylene C-based 
neural probe with three PEDOT 
electrodes and one gold electrode as 
control. The shank is supported on a 
resorbable silk coating to allow insertion 
in the brain. (b) Typical brain activity 
recorded from a freely-moving mouse 
discovering a new environment 
(acquisition cage). The Theta oscillations
(7-12 Hz) are representative of an active 
behavior during exploration.

2.2 In vitro ageing of Parylene C implants

Soaking tests are often carried out to evaluate implants degradation over time [8]. Four Parylene C implants with 
each four PEDOT-modified gold electrodes are soaked in Artificial Cerebral Spinal Fluid (ACSF) for a period of six 
months. Each device is bonded with anisotropic conductive film to a long flexible cable, and glued for isolation 
(Polytech EP630). The devices are soaked in ACSF (25mL) in plastic cups, and the lid is sealed to prevent 
evaporation. Every week, the samples are retrieved from the oven and let cool at room temperature. Electrochemical 
Impedance Spectroscopy (EIS, 10 Hz-10 kHz) is then performed directly in the soaking medium. SEM images are 
taken at different times to evaluate morphology evolution.

2.3 Chronic wireless recordings in mice brain

    In vitro ageing is a model that unfortunately does not take into account tissue density, liquid renewal and 
biological components. Therefore, preliminary trials in vivo are an essential step towards implantation in humans.
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    In this study, device biostability is assessed by recording the hippocampal brain waves produced by five freely-
moving mice discovering a new environment, during a period of maximum 6 months. The Parylene implants are 
integrated with a wireless packaging so that the animals are free to move in the acquisition cage. For each mouse, a
Parylene C probe is implanted in the CA1 region of the hippocampus, while a reference electrode (microscrew with 
silver wire) is screwed to the occipital bone. The whole apparatus is fixed in dental ciment.
   The hippocampus is a region of brain involved in both memory consolidation and spatial navigation. The 
activation of specific pyramidal cells known as “place cells” in the context of spatial navigation leads to a very 
characteristic brain signal composed of Theta oscillations at around 7-12 Hz (Fig 1b). During the recording sessions, 
each mouse is connected to a headstage, mounted with a wireless battery on top (MultiChannel System). The animal 
is then transferred to the acquisition cage, composed of a carton box with litter, where it stays for five minutes. 
During this time, the animal discovers its new environment, and its brain activity is recorded.

3. Results and discussion

3.1 In vitro evolution of Parylene implants

Fig 2. Box plot and SEM images showing impedance and morphology 
evolution measured at 1 kHz at different soaking times in ACSF for 16 
PEDOT-modified electrodes. No significant sign of alteration of neither 
the Parylene substrate nor the PEDOT nanostructuration are observed, 
correlated with stable impedance measurement over time. Black scale 
bars is 50 µm, white scale bar is 10 µm.

    Fig 2 displays the statistics of impedance evolution of 
all the electrodes soaked during this study. To allow 
comparison, impedance is taken at 1 kHz, frequency often 
used in electrophysiology as a reference because it 
corresponds to the frequency of neuron spikes. The graph 
shows that the impedance median of all 16 electrodes lies 
between , and 90% of all 
impedance values are . Most of the outliers, represented as outside crosses, are above one 
order of magnitude compared to the impedance median, and are probably linked to flawed electrodes after Clean 
Room fabrication (problems in passivation etching, for instance) or faulty connectic or packaging. 
    As a matter of fact, the impedance of the electrodes on 3 out of 4 soaked implants were either at stable value, that 
is to say within 10% of their initial value, or even decreased. Scanning microscope images of the four implants 
showed no significant sign of Parylene delamination or swelling (Fig 2). The passivation layer remains well-retained 
on the surface, and the device sides appear unaltered. The presence of few aggregates on the Parylene surface is 
most likely due to precipitations of ACSF ions on the devices. Besides, from a macroscopic point of view, the 
PEDOT coatings seem indifferent to the wet ageing experiment. Indeed, it appears that some residues first found on 
the electrode sites might have dissolved in the soaking medium, which could contribute to the slight reduction in 
impedance value observed with the EIS measurement.

3.2 In vivo evolution of Parylene implants

    Spectral representation of a recording session is depicted on Fig 3, for both stable and unstable electrodes over 
time. For some electrodes, it appears that a faulty contact results in electrode unstability at certain given time during 
the trial. Overall, the number of recording electrodes in vivo in this trial varies depending on the timing, but at any 
given moment, between 70 and 90% of all recorded electrodes is indeed functional. It is important to notice that a
number of electrodes (~8%) were not operating from the first day of recording, consistent with probable faulty 
contacts or direct mechanical damage during insertion. Extra attention should be paid on packaging repeatability to 
avoid failures in the future.
   The alteration of electrode impedance before and after implantation can be observed through EIS measurement 
and morphology assessment via SEM images (Fig 4). After 30 weeks implantation in a mouse brain, the impedance 
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of both gold and PEDOT-modified electrodes in increased by roughly a factor of two at 1 kHz. This raise in 
impedance is not significant in the context of electrophysiology, and could be linked to a variety of parameters, 
among which a slight aggregation of biological tissues on electrode sites, or a mechanical trauma during probe 
retraction. Besides, SEM images of the implanted devices show no apparent sign of either Parylene delamination or 
PEDOT alteration, consistent with the in vitro results.

Fig 3. Examples of stable and unstable recordings from electrodes 
implanted in the same mouse. The stable signal still displays a noticeable 
Theta oscillation with rather stable amplitude. On the other hand, after 
14 weeks, the unstable electrode has lost the ability to accurately record 
brain activity (random power amplitudes in the spectral representation).

Fig 4. EIS evolution before and after 30 weeks implantation in 
mouse brain for PEDOT-modified electrodes, along with a 
representative SEM image before and after implantation (scale bar is 
10 µm).

4. Conclusion

    In this study, we intended to give a preliminary assessment of the stability of Parylene-based neural probes for 
possible chronic purposes, through both in vitro and in vivo models. Parylene devices were soaked in artificial brain 
physiological fluid for a period of 6 months, during which both morphology and electrical properties were 
monitored. No significant sign of alteration of neither the Parylene substrate nor the PEDOT nanostructuration were 
observed, correlated to stable impedance measurement over time. Besides, five mice were implanted with each a 
Parylene implant, and wireless recordings from freely-moving animals were gathered for up to 6 months. Evolution 
of neural recordings quality could not be tied to possible material degradation over time, but the morphology and 
impedance comparison before and after implantation were encouraging, with once again no sign of Parylene 
degradation in time. The next step in line towards biostability assessment should now involve the evaluation of 
tissue reaction to our devices in the long run via immunohistochemical analysis.
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