Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss

To cite this version:

HAL Id: hal-01764831
https://hal.laas.fr/hal-01764831
Submitted on 30 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss

Brigitte Raynaud-Messina,a,b,c Luce Bracq,d,f,2 Maeva Dupont,a,b,c,g, Shanti Souriant,a,b,c,2 Shariq M. Usmanjh,i, Amsha Proag,i Karine Pingris,a,b,i Vanessa Soldani,i Christoph Thibault,k,i Florence Capilla,m, Talal Al Saatti,m Isabelle Gennero,a,n,2 Pierre Juricid,P, Paul Jolicoeur,q,r,s, Jean-Luc Davignon,m,n, Thorsten R. Mempel,h,i, Serge Benichou,d,e,f, Isabelle Maridonneau-Parinib,c,3 and Christel Vérolettab,c,3

aInstitut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31400 Toulouse Cedex 4, France; bInternational Associated Laboratory, CNRS “Immuno-Metabolism-Macrophages-Tuberculosis/HIV” (1167), 31000 Toulouse, France; cInternational Associated Laboratory, CNRS “Immuno-Metabolism-Macrophages-Tuberculosis/HIV” (1167), 1425 Buenos Aires, Argentina; dINSERM U1016, Institut Cochin, 75014 Paris, France; eCNRS UMR8104, Université Paris Descartes, 75006 Paris, France; fInstitut Pasteur Shanghai, Chinese Academy of Sciences, 200000 Shanghai, China; gInstitute of Experimental Medicine-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, National Academy of Medicine, 1425 Buenos Aires, Argentina; hCenter for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129; iHarvard Medical School, Boston, MA 02115; jMultiscale Electron Imaging Platform, 31062 Toulouse, France; kLaboratory for Analysis and Architecture of Systems, CNRS, 31400 Toulouse, France; lInstitut National des Sciences Appliquées de Toulouse, Université de Toulouse, 31400 Toulouse, France; mINSERM, Université Paul Sabatier, Ecole Nationale Vétérinaire de Toulouse, Centre National d’Exploration Fonctionnelle et de Ressources Expérimentales, Service d’Histopathologie, 31100 Toulouse Cedex 3, France; nCentre de Physiopathologie de Toulouse-Purpan, INSERM-CNRS UMR 1043, Université Paul Sabatier, 31062 Toulouse, France; oInstitut Fédératif de Biologie, Centre Hospitalier Universitaire Toulouse, 31059 Toulouse, France; pInstitut de Génomique Fonctionnelle de Lyon, CNRS UMR3444, Université de Lyon, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; qDivision of Experimental Medicine, McGill University, Montreal, QC H3G 1A4, Canada; rDepartment of Microbiology and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada; and sLaboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, QC H2W 1R7, Canada

Edited by Stephen P. Goff, Columbia University Medical Center, New York, NY, and approved January 19, 2018 (received for review July 28, 2017)

Bone deficits are frequent in HIV-1–infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal part (i.e., the podosomes). The viral protein Nef is involved in all HIV-1–induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef.

Bone deficits are frequent complications observed in HIV-1–infected patients. Our study demonstrates that HIV-1 infects osteoclasts, the cells specialized in bone degradation, using different models including HIV-1–infected humanized mice. We decipher the cellular mechanisms by which HIV-1 contributes to enhanced bone degradation in human osteoclasts, showing that the virus modifies the structure and function of the sealing zone, the bone resorption machinery of osteoclasts. We identify the viral protein Nef as the key factor responsible for such effects. As a proof-of-concept, we correlate bone deficit in transgenic Nef-expressing mice with enhanced osteoclast activity. Therefore, our findings provide formal evidence that osteoclasts constitute HIV-1 host target cells, contributing to bone deficits in vivo.

Significance

Bone deficits are frequent complications observed in HIV-1–infected patients. Our study demonstrates that HIV-1 infects osteoclasts, the cells specialized in bone degradation, using different models including HIV-1–infected humanized mice. We decipher the cellular mechanisms by which HIV-1 contributes to enhanced bone degradation in human osteoclasts, showing that the virus modifies the structure and function of the sealing zone, the bone resorption machinery of osteoclasts. We identify the viral protein Nef as the key factor responsible for such effects. As a proof-of-concept, we correlate bone deficit in transgenic Nef-expressing mice with enhanced osteoclast activity. Therefore, our findings provide formal evidence that osteoclasts constitute HIV-1 host target cells, contributing to bone deficits in vivo.

2To whom correspondence may be addressed. Email: raynaud@ipbs.fr, maridono@ipbs.fr, or verollet@ipbs.fr.
3L.B., M.D., and S.S. contributed equally to this work.
4I.M.-P. and C.V. contributed equally to this work.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1713370115/-/DCSupplemental.
by an OC-specific structure called the sealing zone (SZ). It is composed of a dense array of interconnected F-actin structures, the podosomes. The SZ anchors the cells to the bone surface and creates a confined resorption environment where protons and osteolytic enzymes are secreted (11–14). Alteration in SZ formation and dynamics are linked to defective bone resorption, and ultimately to bone disorders, as demonstrated by knocking out regulators or constituents of the SZ (14–17).

To explain the increase in osteolytic activity associated to HIV-1-induced bone loss, only a few mechanisms have been proposed: disruption of the immune system (6, 18), increased production of proinflammatory cytokines (19), and direct infection of OC (20). Regarding the immune system, studies from the HIV-1-transgenic rat model revealed that bone damage results, in part, from an altered production of regulatory factors of osteoclastogenesis secreted by B cells (18). This modified cytokine profile correlates with some bone mineral defects in non-treated HIV-1-infected patients (6). Along with CD4+ T lymphocytes, macrophages serve as primary target cells for HIV-1 in vivo (21–23). Because OC share a common myeloid origin with macrophages, the last proposed hypothesis is that OC are targets for HIV-1, and their infection would then contribute to bone loss. Indeed, it has recently been shown that HIV-1 may replicate in vitro in human monocyte-derived OC and enhance their bone resorption activity (20). However, the relevance of this observation has yet to be provided in vivo, along with the corresponding cellular and viral mechanisms involved in the bone resorption process.

Here, we report the occurrence of infected OC in bones of HIV-1-infected humanized mice and in human synovial explants exposed to HIV-1. We further demonstrate that the exacerbated osteolytic activity of infected OC results from modified structure and function of the SZ, correlates with Src activation, and is dependent on the viral protein Nef.

Results

Infected OC Are Found in the Bones of HIV-1-Infected Humanized Mice and in Human Synovial Explants Exposed to HIV-1. We first investigated whether OC are infected in vivo. Because bone marrow/liver/thymus (BLT) humanized mice infected with HIV-1 reproduce most hallmarks of infection in humans (22, 24, 25), we used these mice infected for 14–21 d (2 × 10^7–6 × 10^8 RNA copies/mL in blood; n = 4) to examine the growth plate of femurs and tibias, the OC-enriched zone. For each bone section (head of femur or tibia from four mice), we quantified 85 ± 22 cells that exhibit OC characteristics (multiple nuclei, TRAP activity, and localization at the bone surface). Importantly, for each infected animal, we identified by immunohistochemistry (IHC) one or two OC positive for the viral protein p24, which is used as an indicator of productive viral infection (Fig. L4 and Fig. S1). Negative controls were included for each sample by omitting the primary antibody.

We then assessed whether OC can be infected in human tissue using synovial membrane explants, which contain fibroblasts, macrophages, lymphocytes, dendritic cells, and OC, in an abundant extracellular matrix (26). Fresh human synovial tissues were incubated ex vivo with the HIV-1 macrophage R5-tropic ADA strain and maintained in culture with osteoclastogenic cytokines to keep resident OC and OC precursors alive throughout the experiment. Fifteen days postinfection, OC were characterized by multiple nuclei, TRAP+, and cathepsin K positivity by IHC. Remarkably, we observed that about 10% of these cells were positive for the viral p24 (n = 5 synovial explants examined) (Fig. 1B).

Altogether, these data show that infection of OC occurs both in vivo in humanized mice and ex vivo in human tissues.

Human OC Are Permissive to HIV-1 Infection by Cell-Free Viruses at Different Stages of Differentiation. To examine the stage of differentiation at which the cells become capable to be infected, we turned to human OC derived from primary monocytes differentiated in vitro in the presence of M-CSF and RANKL. The OC differentiation process was assessed by measuring OC protein level at different stages. While we observed a rapid increase of TRAP and β3 integrin as soon as day 1, we noticed the acquisition of cathepsin K (a late-stage differentiation marker) at day 6; the expression level for all these proteins increased until day
Human OC Are Preferentially Infected by Transmission from Infected T Cells. HIV-1 spreads by infecting target cells either as cell-free particles or more efficiently via cell-to-cell transmission, both in vitro and in vivo (27–30). We thus examined whether mature OC could be infected by contact with infected CD4+ T lymphocytes, first using Jurkat T cells infected with the HIV-1 R5-tropic NLAD8-VSVG strain (>50% of infected T cells, n = 8). Briefly, after 6 h of contact with OC, Jurkat cells were washed out (more than 99% of the T cells were eliminated) (Fig. S3A) and OC were harvested either immediately (day 0) or 5 d later (day 5) and stained for intracellular viral p24 by IF (Fig. 3A and B). We observed that 6-h contact (day 0) was sufficient for T cell-to-OC virus transfer with about 15% of p24+ OC, while no detectable infection was observed at this time point when OC were cultured with cell-free virions produced by T cells. The difference was maintained at day 5. At this time point, the high rate of infected OC could result from the initial infection by T cell-to-OC transmission and from enhanced OC cell fusion. Noticeably, virus transfer via infected T cells led to a productive infection of OC as shown by the amount of p24 detected in the supernatant at day 5 (Fig. 3C), which is higher than in the case of infection with cell-free virions. Finally, we confirmed the efficient virus transfer from infected T cells leading to productive infection of OC, when cells presented characteristics of mature OC, including high fusion index, high TRAP and MMP9 activities, and bone degradation activity (Fig. S2 A–E). Of note, monocyte-derived macrophages (MDM) from the same donors differentiated with M-CSF (at day 10) only exhibited undetectable or low levels of OC markers, low fusion index, and lacked osteolytic activity (Fig. S2 B–E). Cells were infected in vitro with the HIV-1 R5 ADA strain at day 0, 1, 6, or 10 of differentiation (Fig. 2A). The extent of HIV-1 infection and replication was evaluated at day 10 postinfection by immunofluorescence (IF) analysis of p24 and quantified by measuring the concentration of p24 released in the supernatant. While monocytes (day 0) were poorly able to sustain infection, cells became increasingly permissive to infection along the differentiation process (Fig. 2B and C; black bars); this correlated with the increased expression of the CCR5 entry coreceptor from day 1 (Fig. S2F). Moreover, we observed that virus production was inhibited by pretreatment of OC with the CCR5 antagonist Maraviroc, the reverse-transcriptase inhibitor AZT, the integrase inhibitor Raltegravir, or the protease inhibitor Ritonavir (Fig. S2G), indicating that the p24 signal corresponds to productively infected cells. We noticed that MDM and OC equally sustained infection (Fig. 2B and C) (≥95% donors supported infection, n = 29), which is consistent with similar levels of CD4 and CCR5 receptors expressed during differentiation (Fig. S2F) and at day 10 (20). Moreover, the viral particles produced by infected OC or MDM had comparable infectivity, as assessed using the TZM-bl reporter cell line (27 ± 5% of p24+ TZM-bl for OC-produced particles vs. 26 ± 7% for MDM, n = 5), indicating that both cell types released infectious virions. Importantly, HIV-1 did not affect OC viability, as cell density was not altered even at day 20 postinfection (1,580 ± 276 nuclei/mm² for noninfected OC vs. 1,560 ± 352 for infected OC, n = 6 donors, ≥3,000 cells per condition). Finally, we observed virus budding in OC and both mature and immature virus particles accumulating in membrane-delineated intracellular compartments by electron microscopy (Fig. 2D).

Collectively, these results show that HIV-1 infects and replicates in OC and their precursors, without significant cytotoxic effect.
OC by using autologous infected T lymphocytes as virus donor cells (Fig. S3 B and C).

These results show that OC are not only infected by cell-to-cell transfer via infected T cells, but it is also more efficient than infection by cell-free virions.

HIV-1 Infection Enhances OC Precursor Migration and OC Bone Resorption Activity. In HIV-1 transgenic rats, severe bone loss has been correlated to an increase in the number and size of OC (18). This increase could reflect an enhanced recruitment of OC precursors or a stimulated OC differentiation. We tested both hypotheses. It is known that migration of OC precursors from blood to bones requires proteases in vivo (31), and that defects in the 3D protease-dependent mesenchymal migration of these cells in vitro correlates with lower recruitment of OC to bones (16). For these reasons, we assessed whether HIV-1 infection alters OC precursor mesenchymal migration (32, 33). Human OC precursors were infected at day 1 of differentiation, seeded at day 2 on Matrigel, and migration was measured 48 h later (Fig. 4). Of note, OC precursors inside Matrigel exhibited the characteristic elongated shape of the mesenchymal migration (32). The percentage of migrating cells and the distance covered by the cells were both significantly increased upon HIV-1 infection.

Next, to test whether HIV-1 infection affects OC differentiation, we examined the consequences of infection on the extent of OC fusion and bone resorption activity. HIV-1 infection significantly enhanced cell fusion, as measured by the fusion index and the area covered by infected versus noninfected OC (Fig. 5A), the percentage of TRAP+ multinucleated cells, and the number of nuclei per multinucleated cell (Fig. S4A and B). When cells were treated with Maraviroc before infection, the fusion index was reduced to a similar level to controls (Fig. S4C). Moreover, to explore the effects of OC infection on bone resorption activity, we characterized the morphology of the resorption lacunae. The total bone resorption area increased upon HIV-1 infection (Fig. 5 B–D) and resorption pits displayed profound morphological modifications (Fig. 5 B–F). Infected OC generated resorption pits that appeared deeper (28 ± 1.2 μm vs. 17 ± 0.7 μm for controls, ****P < 0.0001) (Fig. 5C) and less elongated (Fig. 5E) than those of noninfected OC, which form resorption trails reminiscent of “inchworm-like migration” (34). These modifications correlated with a significant up-regulation of the bone volume resorbed per pit in the HIV-1 infection context (Fig. 5F).

Furthermore, we also found a significant increase in the concentration of the C-terminal telopeptide of type 1 collagen (CTX) released in the supernatants and used as an additional marker of bone resorption (Fig. 5G).

Osteolytic activity is mediated by acidic dissolution of the minerals and enzymatic digestion of the organic components (35). HIV-1 infection enhanced these two activities, as evidenced by the increase in the capacity of OC to dissolve minerals (Fig. 5H) and release TRAP (Fig. 5I). No variation in protein expression and activity was noticed regarding secreted cathepsin K and MMP9 (Fig. 5 J and K).

Finally, we examined OC attachment/detachment, a critical factor for bone degradation (12), given that OC resorption partly proceeds through a succession of migratory phases alternating with bone resorption stationary phases (12, 36). When infected, OC were more resistant to detachment induced by Accutase treatment than noninfected counterparts (Fig. 5L). This increased adhesion likely slows down OC motility on bone, which should contribute to the modified morphology of resorption lacunae and to the higher bone degradation activity.

In all, these results indicate that HIV-1 infection enhances the 3D migration of OC precursors, which may favor recruitment of OC to bones, as well as the adhesion and bone resorption activity of mature OC.

HIV-1 Infection Alters the Architecture of the SZ and Activates Src Kinase. Because the SZ has been related to adhesion and bone degradation capacities of OC (11, 37), we characterized the architecture of this structure in infected OC. We observed that in OC seeded on bones, the number of cells harboring SZ was increased (Fig. 6 A and B). This effect was not duplicated by infection with *Mycobacterium tuberculosis*, *Francisella novicida*, or *Salmonella typhimurium* (infection rates ≥50% for each bacteria, percentage of cells harboring SZ: 18 ± 9 for *M. tuberculosis*, 22 ± 6 for *F. novicida*, 25 ± 4 for *S. typhimurium* vs. 25 ± 10 in noninfected OC, mean ± SD, n = 4), suggesting that this parameter was not generally influenced by OC infection. In addition, the size of the SZ was increased (Fig. 6 A and C), delineating an area corresponding to 25 ± 1% of the cell surface of infected OC vs. 18 ± 2% in control cells (Fig. 6D). We also noticed that the fluorescence intensity of F-actins was higher in the SZ of infected cells (Fig. 6 A and E) and the F-actin core of podosomes, the basal element of the SZ, was larger (Fig. 6 F and G). The tyrosine kinase Src plays a key role in bone homeostasis by controlling the formation and stability of the SZ and the rate of actin turnover within OC podosomes (14, 16, 38). Consequently, OC from Src−−/− mice do not assemble functional SZ and the mice exhibit a strong osteopetrotic phenotype (15). Interestingly, we showed that in the context of HIV-1–infected OC, the activity of Src kinase family was enhanced as measured by phosphorylation of the regulatory tyrosine (Fig. 6H).

These results show that the increase in bone adhesion and resorption observed in infected OC is associated with larger and more numerous SZ as well as higher Src kinase activity.

The Viral Factor Nef Is Involved in HIV-1–Induced Effects on OC Both In Vitro and In Vivo. To better understand the viral mechanisms involved in HIV-1–induced effects in OC, we focused on the viral accessory factor Nef because it is known, among other functions, to modulate F-actin organization and to stimulate both the kinase activity of Src (39–44) and cell fusion (45). To this end, we used wt HIV-1 and nef-deleted HIV-1 (Δ nef/HIV-1) ADA strains that present the same level of infectivity in macrophages (33, 45–47) and in OC (Fig. S5A). Importantly, the viral particles produced by OC infected with the wt or mutant strains showed the same level of infectivity (26 ± 7% of p24+ TZM-bl cells for the wt strain vs. 22 ± 5% for Δ nef/HIV-1, n = 4). As shown in Fig. 7A,
the 3D mesenchymal migration of OC precursors infected with dnef/HIV-1 was similar to noninfected cells. In mature OC, Src kinase phosphorylation, bone resorption activity, percentage of cells with SZ, fusion index, and SZ area were reduced in dnef/HIV-1-infected OC in comparison with cells infected with the wt virus (Fig. 7 B–F).

Next, we considered performing ectopic expression of Nef-GFP in OC, but we encountered a technical limitation; only 5% of Nef-expressing cells were obtained, precluding a rigorous quantification of SZ size and bone resorption activity. Nonetheless, when the transfected cells were plated on glass, we observed a fraction of Nef-GFP localized at the SZ on bones and that podosomes occupied a larger area than those of control cells (Fig. 7 G and H), thus mimicking the results obtained with OC infected with the wt virus (Fig. 6 F and G).

Next, we took advantage of transgenic (Tg) mice expressing Nef under the regulatory sequence of the human CD4C gene to overcome the transfection difficulty of human OC. The CD4C regulatory element drives Nef expression in CD4+ T cells, macrophages, and dendritic cells (48, 49), and also in OC (Fig. S5). In fact, in the absence of any available Nef antibody for IHC, we used CD4C/HIV-1-tg mice (Fig. 8). To characterize the effects of Nef expression in OC, OC precursors were isolated from bone marrow of Nef-Tg and non-Tg mice and differentiated ex vivo. While the fusion of OC from Nef-Tg mice was not modified compared with OC derived from control mice (Fig. 8A), the bone resorption (Fig. 8B) and the width of F-actin staining in the SZ were enhanced (Fig. 8 C and D), indicating that Nef expression is sufficient to increase the osteolytic activity of OC.
Finally, we addressed the role of Nef on bone remodeling in vivo. Nef-Tg mice exhibited bone defects as evidenced by abnormal bone fragility during dissection and by an overall decrease in bone density (Fig. S5). In tibia growth plates of 7-wk-old female mice, we observed a decrease of the bone area (trabecular surface) in Nef-Tg mice compared with non-Tg mice (Fig. 8 E and F, gray), and a disorganized hypertrophic chondrocyte zone (Fig. SE, delineated by the red line), which appeared thinner and irregular. Moreover, a marked increase in TRAP\(^+\) signal was noticed (Fig. 8 E and F, purple), indicating that OC were larger and more numerous in Nef-Tg mice compared with control littermates.

Altogether, these results support that the viral protein Nef is sufficient to increase the osteolytic activity of OC and, thereby, potentially contribute to bone loss in vivo.

Discussion

Bone defects resulting from HIV-1 infection have long been described, but the causes remain poorly investigated (1). We report that HIV-1 infects OC in vivo, ex vivo, and in vitro. In infected OC, the structure and function of the SZ are modified, affecting bone attachment and resorption. The viral protein Nef is instrumental in these processes. Hence, OC are cell targets for HIV-1, which is, to our knowledge, the only pathogen able to manipulate the SZ.

Using HIV-1–infected BLT-humanized mice, we obtained evidence of the presence of infected OC in bones. Infected OC appear as a rare event, either due to the moderated viremia (we worked shortly after infection) and low sensitivity of the IHC detection, or to the fact that infected OC are poorly detected in tissues similarly to infected macrophages (22, 50–54). OC can also be infected ex vivo in fresh human synovial explants. Importantly, OC infection in vivo and ex vivo was detected by IHC of the viral p24, which is suggestive of viral replication. In vitro, electron microscopy images of infected OC revealed that the virus particles bud and accumulate in intracellular compartments, suggestive of the virus-containing compartments described in macrophages (55–57). The virus production by OC was quantitatively similar to that of macrophages, a well-known HIV-1 host cell (21, 22, 58). Infection of OC occurred at different time points along the differentiation process, starting at day 1 in OC precursors and correlating with CCR5 expression. This suggests that circulating OC precursors, which encounter the virus in blood, could become infected and migrate to bones, where they terminally differentiate (59, 60) (Fig. 9). Whether mature OC can be infected directly in bones is difficult to explore. Up to now, the presence of HIV-1 in bones has not been documented. As recently shown for macrophages (61), direct contact of OC with infected Jurkat or primary CD4\(^+\) T lymphocytes leads to virus transfer and productive infection of OC,
which is clearly more efficient than infection by cell-free viruses. This is likely to be the physio-pathological route to infect OC in situ, which would be consistent with data showing that cell-to-cell infection is critical for efficient viral spread in vitro and in vivo (25, 29, 61–69). Altogether, these results show that OC are host cells for HIV-1.

Raynaud-Messina et al.

Fig. 7. HIV-1 effects on differentiation and function of OC involve the viral protein Nef. (A–F) Nef is necessary for HIV-1–induced effects in OC. Human OC precursors (A) or mature OC (B–F) were infected with wt HIV-1 or with delta nefHIV-1 (NI, noninfected). (A) Percentage of migrating OC precursors after 48 h measured as in Fig. 4, n = 4 donors. (B) Quantification of Western blot analyses on whole-cell lysates using antibodies against the phospho-Tyr416 of Src kinases, Src and Actin as in Fig. 6H. Results are expressed as mean ± SEM, n = 6 donors. (C) Resorbed bone area (n = 4). (D) the percentage of cells forming SZ (n = 4 donors, 300 cells per donor), (E) the fusion index (>3,000 cells per condition, n = 6 donors) illustrated by mosaics of 4 × 4 confocal fields (F-actin in red and nuclei in green), (F) the SZ surface in OC seeded on bones and stained for F-actin (phalloidin), (n = 3 donors, >25 SZ). (Scale bars, 150 μm in E, 10 μm in F.) Results are expressed as mean ± SEM. (G and H) Expression of Nef-GFP in OC. OC were transfected with NefSF2-GFP or GFP (control) and stained for F-actin (phalloidin, red) and nuclei (blue). (G) A fraction of Nef localizes at the SZ. Confocal images of OC expressing NefSF2-GFP. Arrowheads show colocalization of Nef-GFP with F-actin at the SZ. (Scale bar, 10 μm, Insets, 2x zoom.) (H) Nef expression increases the size of individual podosomes. Automated quantification of the F-actin fluorescence area of individual podosomes. Mean ± SEM, n = 4 donors (>2,000 podosomes from over five cells per donor). *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, ****P ≤ 0.0001.
Regarding the consequence of HIV-1 infection on OC function, along with this study, there is another report describing that OC precursors should favor OC recruitment to bones, as depicted in Fig. 9, contributing to bone disorders in infected patients.

Nef is a crucial determinant of viral pathogenesis and disease progression. It is known to physically interact with several host proteins to control their activity at the benefit of the virus. Namely, it regulates intracellular protein trafficking (76), actin cytoskeleton (41), cell–cell fusion (45), cell migration (33, 42, 77, 78), and the kinase activity of several members of the Src family (40). In infected OC, all these effects could contribute to the enhanced bone resorption activity that is observed in the present study. In vitro experiments show that Nef, in part located at the SZ, was necessary for all of the HIV-induced effects. The role of Nef was also revealed in vivo in CD4C-Nef-Tg mice that exhibit reduced bone density and an increase of the surface occupied by OC-TRAP staining (18). OC derived from the bone marrow of CD4C-Nef-Tg mice resorbed more and exhibited wider SZ, mimicking the results obtained with human OC infected with HIV-1. Therefore, it is likely that OC participate in the bone remodeling defects evidenced in Nef-Tg mice. Because these mice express Nef in CD4+ cells, including T cells, macrophages, OC, and dendritic cells, we propose that the observed bone defects are due, at least in part, to OC expressing Nef in addition to disrupted immune responses, which are known to participate in bone homeostasis (6, 18, 48, 79). Although we do not exclude potential contribution by other viral proteins (80, 81), our results reveal Nef as an essential mediator of the HIV-1 effect on bones (Fig. 9).

It remains to be shown how the virus benefits from manipulating OC. Although OC are giant cells, they do not produce more viral particles than macrophages and these virions exhibit the same infectivity. In contrast with T cells, the cell viability of infected OC is not affected and we can suspect that these infected cells may survive for a long time in bones. Moreover, drug delivery to bones is limited by the unique anatomical features of

Fig. 8. In Nef-Tg mice, the osteolytic activity of OC and bone defects are enhanced. (A–D) OC differentiated ex vivo from Tg-mice are more osteolytic. OC were differentiated from bone marrow precursors isolated from Nef-Tg and non Tg mice and the fusion index (A), the bone resorption area (B), and the F-actin belt thickness (C) were quantified (50 SZ per condition, n = 3 mice per genotype). (D) Representative images of bone structures of OC from non Tg and Nef-Tg mice stained for F-actin (red), vinculin (green) and DAPI (blue). Enlarged frames, 2× zoom. (Scale bars, 10 μm.) (E and F) Nef-Tg mice exhibit bone defects. (E) Representative histological sections of tibia from 7-wk-old mice stained for TRAP to visualize OC (purple), and counterstained with Methyl green and Alcian blue: the bone tissue appears in gray, nuclei in green (corresponding to the nuclei of bone marrow cells), and cartilage in blue. (Scale bar, 200 μm.) Enlarged frames: ×4 zoom. (F) Quantification of the surface occupied by trabecular bone and surface occupied by TRAP-positive signal in three separate histological sections per mouse (n = 3 mice per genotype) are shown. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001.
this tissue (82). Therefore, a putative advantage for the virus may consist in the use of OC as viral reservoirs to hide and survive.

In conclusion, OC are host target cells for HIV-1 that become more osteolytic as a consequence of larger and more degradative SZ. We propose that infected OC participate in bone disorders encountered in HIV-1–infected patients and may constitute a reservoir for the virus. The viral protein Nef appears as a key regulator of the bone resorption activity of OC infected by HIV-1. In summary, this study provides a better understanding of the underlying causes of bone loss following HIV-1 infection.

Materials and Methods

Materials and Methods, cell culture and transfection, HIV-1 infection of BLT-humanized mice, viral transfer from infected T cells to primary human OC, cell-free infection of OC and macrophages, and histological analyses of mice bones and of human synovial tissues, are described in SI Materials and Methods. Additional materials and methods included flow cytometry analysis, immunoblotting, gel zymography, TRAP staining, IF and transmission electron microscopy analyses, 3D migration, adhesion and resorption assays, chemicals and antibodies, and statistical analysis are also available in SI Materials and Methods.

Human monocytes were provided by Etablissement Français du Sang, Toulouse, France, under contract 21/PLER/TOU/IPBS01/2013. Human monocytes were provided by Etablissement Français du Sang, Toulouse, France, under contract 21/PLER/TOU/IPBS01/2013–0042. Experiments with CD4+ HIV Nef mice were approved by the institutional Animal Ethics committee (Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, QC, Canada), and experiments with female BLT mice were performed in accordance with guidelines and regulations implemented by the Massachusetts General Hospital Institutional Animal Care and Use Committee.

ACKNOWLEDGMENTS. We thank G. Lugo-Villarino and R. Poincloux for critical reading of the manuscript; C. Salon from US006/Centre Régional d’Exploration Fonctionnelle et de Ressources Expérimentales; M. Dubois, M. Cazabat, M. Requena, and J. Izopet from the BSL3 laboratory of the BiVic facility; F. Moreau and C. Berrone from the animal BSL3 facilities at Institut de Pharmacologie et de Biologie Structurale; C. Bordier for help with cytometry experiments; N. Ortega and A. Mètias for help in histology; A. Labrousse for help with RT-PCR; E. Cavaignac for providing synovium samples; E. Meunier for infections with intracellular bacteria; Marie-Chantal Simard and Julio Roberto Caceres-Corte for taking X-rays of Nef-Tg mice, the TRIF imaging facility and ANEXPLO functional exploration facility; Stephanie Balor from the Multiscale Imaging Platform of the Centre de Biologie Intégrative for his assistance; and the AIDS Research and Reference Reagent Program, Division of AIDS, National Institute of Allergy and Infectious Diseases. This work was supported by the Centre National de la Recherche Scientifique, the Agence Nationale de la Recherche (ANR 2010-01301, ANR14-CE11-0020-02, ANR16-CE13-0005-01, ANR-11-EQUIPEX-0003), the Agence Nationale de Recherche sur le Sida et les hépatites virales (ANRS2014-CI-2, ANRS2014-049); the Fondation pour la Recherche Médicale (DEQ2016 0334894); INSERM Plan Cancer, the Human Frontier Science Program (RGP0035/2016); German Science Foundation research fellowship US116-21-1 (to S.M.U.); and National Institutes of Health Grants R01 AI097052 and DA036298 (to T.R.M.). L.B. and S.B. are supported by grants from the Institut Pasteur International Network, Institut Pasteur Shanghai, and the Chinese Academy of Sciences. Work in the P. Jolicoeur laboratory was supported by the Canadian Institute of Health Research.

Raynaud-Messina et al.

