Buried Waveguides using a Quasi-Planar Process
Stéphane Calvez, Alexandre Arnoult, Pierre-François Calmon, Aurélie Lecestre, Chantal Fontaine, Antoine Monmayrant, Olivier Gauthier-Lafaye, Guilhem Almuneau

To cite this version:

HAL Id: hal-01768376
https://hal.laas.fr/hal-01768376
Submitted on 19 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Buried Waveguides using a Quasi-Planar Process
S. Calvez, A. Arnoult, P.-F. Calmon, A. Lecestre, C. Fontaine, A. Monmayrant, O. Guathier-Lafaye, G. Almuneau
LAAS-CNRS, Univ. de Toulouse, CNRS, 7 avenue du Colonel Roche, F-31400 Toulouse, France

Context:
The selective oxidation of Al-containing III-V semiconductors with high Al content is an established process to confine light and electrical injection in vertical-cavity surface emitting lasers [1-2] which is also used to create edge-emitting lasers [2], whispering-gallery-mode resonators [3-4], photonic crystal waveguides [5-6] and non linear frequency converters [7].

Problem:
The oxidation is a lateral oxidation process performed from the edges of an etched mesa
The associated drawbacks are:
• Loss of wafer surface planarity
• Complex subsequent steps of fabrication process

Contribution:
Here, we demonstrate a modified process where the oxidation is performed via a discrete set of holes instead of a linear mesa for the fabrication of straight waveguides.

[6]: Welna et al., Photonics and Nanostructures, 11, 139 (2013).

Introduction

Design - Fabrication

Context:
The selective oxidation of Al-containing III-V semiconductors with high Al content is an established process to confine light and electrical injection in vertical-cavity surface emitting lasers [1-2] which is also used to create edge-emitting lasers [2], whispering-gallery-mode resonators [3-4], photonic crystal waveguides [5-6] and non linear frequency converters [7].

Problem:
The oxidation is a lateral oxidation process performed from the edges of an etched mesa
The associated drawbacks are:
• Loss of wafer surface planarity
• Complex subsequent steps of fabrication process

Contribution:
Here, we demonstrate a modified process where the oxidation is performed via a discrete set of holes instead of a linear mesa for the fabrication of straight waveguides.

[6]: Welna et al., Photonics and Nanostructures, 11, 139 (2013).

Introduction

Design - Fabrication

Context:
The selective oxidation of Al-containing III-V semiconductors with high Al content is an established process to confine light and electrical injection in vertical-cavity surface emitting lasers [1-2] which is also used to create edge-emitting lasers [2], whispering-gallery-mode resonators [3-4], photonic crystal waveguides [5-6] and non linear frequency converters [7].

Problem:
The oxidation is a lateral oxidation process performed from the edges of an etched mesa
The associated drawbacks are:
• Loss of wafer surface planarity
• Complex subsequent steps of fabrication process

Contribution:
Here, we demonstrate a modified process where the oxidation is performed via a discrete set of holes instead of a linear mesa for the fabrication of straight waveguides.

[6]: Welna et al., Photonics and Nanostructures, 11, 139 (2013).

Introduction

Design - Fabrication

Context:
The selective oxidation of Al-containing III-V semiconductors with high Al content is an established process to confine light and electrical injection in vertical-cavity surface emitting lasers [1-2] which is also used to create edge-emitting lasers [2], whispering-gallery-mode resonators [3-4], photonic crystal waveguides [5-6] and non linear frequency converters [7].

Problem:
The oxidation is a lateral oxidation process performed from the edges of an etched mesa
The associated drawbacks are:
• Loss of wafer surface planarity
• Complex subsequent steps of fabrication process

Contribution:
Here, we demonstrate a modified process where the oxidation is performed via a discrete set of holes instead of a linear mesa for the fabrication of straight waveguides.

[6]: Welna et al., Photonics and Nanostructures, 11, 139 (2013).