Time-Efficient Read/Write Register in Crash-prone Asynchronous Message-Passing Systems
Achour Mostefaoui, Michel Raynal, Matthieu Roy

To cite this version:

HAL Id: hal-01784210
https://hal.laas.fr/hal-01784210
Submitted on 3 May 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Time-Efficient Read/Write Register
in Crash-prone Asynchronous Message-Passing Systems

Achour Mostéfaoui · Michel Raynal · Matthieu Roy

May 3, 2018

Abstract The atomic register is one of the most basic and useful object of computing science, and its simple read-write semantics is appealing when programming distributed systems. Hence, its implementation on top of crash-prone asynchronous message-passing systems has received a lot of attention. It was shown that having a strict minority of processes that may crash is a necessary and sufficient requirement to build an atomic register on top of a crash-prone asynchronous message-passing system.

This paper visits the notion of a fast implementation of an atomic register, and presents a new time-efficient asynchronous algorithm that reduces latency in many cases: a write operation always costs a round-trip delay, while a read operation costs a round-trip delay in favorable circumstances (intuitively, when it is not concurrent with a write). When designing this algorithm, the design spirit was to be as close as possible to the original algorithm proposed by Attiya, Bar-Noy, and Dolev.

Keywords: Asynchronous message-passing system, Atomic read/write register, Concurrency, Fast operation, Process crash failure, Synchronous behavior, Time-efficient operation.

1 Introduction

Since Sumer time [8], and --much later-- Turing’s machine tape [15], read/write objects are certainly the most basic memory-based communication objects. Such an
object, usually called a register, provides its users (processes) with a write operation which defines the new value of the register, and a read operation which returns the value of the register. When considering sequential computing, registers are universal in the sense that they allow us to solve any problem that can be solved [15]. Although named differently in recent architectures such as multi-core systems, the read/write semantics of a register is the most clean and easy to understand abstraction of shared memory and is extensively used in multi-threaded programs.

Register in message-passing systems. In a message-passing system, the computing entities communicate only by sending and receiving messages transmitted through a communication network. Hence, in such a system, a register is not a communication object given for free, but constitutes a communication abstraction which must be built with the help of the communication network and the local memories of the processes.

Several types of registers can be defined according to which processes are allowed to read or write it, and the quality (semantics) of the value returned by each read operation. We consider here registers which are single-writer multi-reader (SWMR) and atomic. Atomicity means that (a) each read or write operation appears as if it had been executed instantaneously at a single point of the time line, between is start event and its end event, (b) no two operations appear at the same point of the time line, and (c) a read returns the value written by the closest preceding write operation (or the initial value of the register if there is no preceding write) [9]. Algorithms building multi-writer multi-reader (MWMR) atomic registers from single-writer single-reader (SWSR) registers with a weaker semantics (safe or regular registers) are described in several textbooks (e.g., [3,10,13]).

Many distributed algorithms have been proposed to build a register on top of a message-passing system, be it failure-free or failure-prone. In the failure-prone case, the addressed failure models are the process crash failure model, or the Byzantine process failure model (see, the textbooks [3,10,12,14]). The most famous of these algorithms was proposed by H. Attiya, A. Bar-Noy, and D. Dolev in [2]. This algorithm, which is usually called ABD according to the names its authors, considers an n-process asynchronous system in which up to \(t < \frac{n}{2} \) processes may crash (it is also shown in [2] that \(t < \frac{n}{2} \) is an upper bound of the number of process crashes which can be tolerated). This simple and elegant algorithm, relies on (a) quorums [16], and (b) a simple broadcast/reply communication pattern. ABD uses this pattern once in a write operation, and twice in a read operation implementing an SWMR register.

Fast operation. To our knowledge, the notion of a fast implementation of an atomic register operation, in failure-prone asynchronous message-passing systems, was introduced in [5] for process crash failures, and in [6] for Byzantine process failures. These papers consider a three-component model, namely there are three different types of processes: a set of writers \(W \), a set of readers \(R \), and a set of servers \(S \) which implements the register. Moreover, a client (a writer or a reader) can communicate only with the servers, and the servers do not communicate among themselves.

In these papers, fast means that a read or write operation must entail exactly one communication round-trip delay between a client (the writer or a reader) and the
servers. When considering the process crash failure model (the one we are interested in in this paper), it is shown in [5] that, when \((|W| = 1) \land (t \geq 1) \land (|R| \geq 2)\), the condition \((|R| < \frac{|S|}{T} - 2)\) is necessary and sufficient to have fast read and write operations (as defined above), which implement an atomic register. It is also shown in [5] that there is no fast implementation of an MWMR atomic register if \((|W| \geq 2) \land (|R| \geq 2) \land (t \geq 1)\).

Algorithms suited to this three-tier model (writers, readers, and servers) providing very fast read operations are described in [7].

Another notion of efficiency is related to the size of the control information carried by messages. This issue is mainly addressed in [11], where it is shown that two bits are sufficient.

Content of the paper: bounded delay assumption and time-efficiency. The work described in [5][6] is mainly on the limits of the three-component model (writers, readers, and servers constitute three independent sets of processes) in the presence of process crash failures, or Byzantine process failures. These limits are captured by predicates involving the set of writers \((W)\), the set of readers \((R)\), the set of servers \((S)\), and the maximal number of servers that can be faulty \((t)\). Both the underlying model used in this paper and its aim are different from this previous work.

While keeping the spirit (basic principles and simplicity) of ABD, our aim is to design a time-efficient implementation of an atomic register in the classical model used in many articles and textbooks (see, e.g., [2][3][10][13]). This model, where any process can communicate with any process, can be seen as a peer-to-peer model in which each process is both a client (it can invoke operations) and a server (it manages a local copy of the register that is built)\(^1\).

Adopting the usual distributed computing assumption that (a) local processing times are negligible and assumed consequently to have zero duration, and (b) only communication takes time, this paper focuses on the communication time needed to complete a read or write operation. For this reason the term time-efficiency is defined here in terms of message transfer delays, namely, the cost of a read or write operation is measured by the number of “consecutive” message transfer delays they require to terminate. Let us notice that this includes transfer delays due to causally related messages (for example round trip delays generated by request/acknowledgment messages), but also (as we will see in the proposed algorithm) message transfer delays which occur sequentially without being necessarily causally related. Let us notice that this notion of a time-efficient operation does not involve the model parameter \(t\).

In order to give a precise meaning to the notion of a “time-efficient implementation” of a register operation, this paper considers the duration of read and write operations based on a specific additional synchrony assumption, usually named “bounded delay” assumption. This assumptions and the associated time-efficiency of the proposed algorithm are the following.

\(^1\) Considering the three-component model where each reader is also a server (i.e., \(R = S\)), we obtain a two-component model with one writer and reader-server processes. In this model, the necessary and sufficient condition \((|R| < \frac{|S|}{T} - 2)\) can never be satisfied, which means that, it is impossible to design a fast implementation of a SWMR atomic register in such a two-component model.
Let us consider the case where every message takes at most Δ time units to be transmitted from its sender to any of its receivers. In such a context, the algorithm presented in the paper has the following time-efficiency properties:

- A write operation takes at most 2Δ time units.
- A read operation which is write-latency-free takes at most 2Δ time units. (The notion of write-latency-freedom is defined in Section 3. Intuitively, it captures the fact that the behavior of the read does not depend on a concurrent or faulty write operation, which is the usual case in read-dominated applications.) Otherwise, it takes at most 3Δ time units, except in the case where the read operation is concurrent with a write operation and the writer crashes during this write, where it can take up to 4Δ time units. (Let us remark that a process can experience at most once the 4Δ read operation scenario.)

Hence, while it remains correct in the presence of any asynchronous message pattern (e.g., when each message takes one more time unit than any previous message), the proposed algorithm is particularly time-efficient when “good” scenarios occur. Those are the ones defined by the previous synchrony patterns where the duration of a read or a write operation is a single round-trip delay. Moreover, in the other synchrony scenarios, where a read operation is concurrent with a write, the maximal duration of the read operation is precisely quantified. A concurrent write adds uncertainty whose resolution by a read operation requires one more message transfer delay (and two if the concurrent write crashes).

Roadmap. The paper consists of 7 sections. Section 2 presents the system model. Section 3 defines the atomic register abstraction, and the notion of a time-efficient implementation. Then, Section 4 presents an asynchronous algorithm providing an implementation of an atomic register with time-efficient operations, as previously defined. Section 5 proves its properties. Section 6 provides insights on the practical impact of the latency-efficiency in real systems. Finally, Section 7 concludes the paper.

2 System Model

Processes. The computing model is composed of a set of n sequential processes denoted p_1, \ldots, p_n. Each process is asynchronous which means that it proceeds at its own speed, which can be arbitrary and remains always unknown to the other processes.

A process may halt prematurely (crash failure), but executes correctly its local algorithm until it possibly crashes. The model parameter t denotes the maximal number of processes that may crash in a run. A process that crashes in a run is said to be faulty. Otherwise, it is correct or non-faulty.

Communication. The processes cooperate by sending and receiving messages through bi-directional channels. The communication network is a complete network, which means that any process p_i can directly send a message to any process p_j (including itself). Each channel is reliable (no loss, corruption, nor creation of messages), not
necessarily first-in/first-out, and asynchronous (while the transit time of each message is finite, there is no upper bound on message transit times).

A process \(p_i \) invokes the operation “send \(\text{TAG}(m) \) to \(p_j \)” to send \(p_j \) the message tagged \(\text{TAG} \) and carrying the value \(m \). It receives a message tagged \(\text{TAG} \) by invoking the operation “receive \(\text{TAG}() \)”. The macro-operation “broadcast \(\text{TAG}(m) \)” is a shortcut for “for each \(j \in \{1, \ldots, n\} \) send \(\text{TAG}(m) \) to \(p_j \) end for”. (The sending order is arbitrary, which means that, if the sender crashes while executing this statement, an arbitrary – possibly empty– subset of processes will receive the message.)

Let us notice that, due to process and message asynchrony, no process can know if an other process crashed or is only very slow.

Notations. In the following, the previous computation model, restricted to the case where \(t < n/2 \), is denoted \(\text{CAMP}_{n,t}[t < n/2] \) (Crash Asynchronous Message-Passing).

It is important to notice that, in this model, all processes are a priori “equal”. As we will see, this allows each process to be at the same time a “client” and a “server”. In this sense, and as noticed in the Introduction, this model is the “fully connected peer-to-peer” model (whose structure is different from other computing models such as the client/server model, where processes are partitioned into clients and servers, playing different roles).

3 Atomic Register and Time-efficient Implementation

3.1 Atomic read/write register

Read/write register. A concurrent object is an object that can be accessed by several processes (possibly simultaneously). An SWMR register (say \(\text{REG} \)) is a concurrent object which provides exactly one process (called the writer) with an operation denoted \(\text{REG}.\text{write}() \), and all processes with an operation denoted \(\text{REG}.\text{read}() \). When the writer invokes \(\text{REG}.\text{write}(v) \) it defines \(v \) as being the new value of \(\text{REG} \).

Effective operation. The notion of an effective read or write operation is from [14]. When a process crashes while executing an operation, this operation may take effect or not. The notion of an effective operation captures the fact that, due to process crashes, some operations “participate” in the computation, while others do not. More precisely, we have the following [14].

- A read operation is effective if the invoking process does not crash during its execution.
- A write operation is effective if the invoking process does not crash during its execution, or, despite the fact that it crashes during its execution, the value it writes is returned by an effective read operation.
Atomic read/write register. An SWMR atomic register (we also say the register is linearizable [4]) is defined by the following set of properties [9].

- Liveness. The invocation of an effective operation by a correct process terminates.
- Consistency (safety). All the effective operations appear as if they have been executed sequentially and this sequence S of operations is such that:
 - each effective read returns the value written by the closest write that precedes it in S (or the initial value of REG if there is no preceding write),
 - if an effective operation op_1 terminated before an effective operation op_2 started, then op_1 appears before op_2 in the sequence S.

This set of properties states that, from an external observer point of view, the object appears as if it was accessed sequentially by the processes, this sequence $i)$ respecting the real time access order, and $ii)$ belonging to the sequential specification of a read/write register.

3.2 Bounded delay-based time-efficient implementation

The notion of a time-efficient operation is not related to its correctness, but is a property of its implementation. It is sometimes called non-functional property. In the present case, it captures the time efficiency of operation. Time-efficiency is a property that is closely related to the notion of fast [5] implementation. While a fast implementation focus on the minimum number of round-trip transfers that are necessary, a time-efficient operation, as we consider here, provides us with time guarantees when favorable synchrony conditions hold on the system execution.

Let us remember that it is assumed that the local processing times needed to implement these high level read and write operations are negligible, and consider a scenario where all message transfer delays are upper bounded by Δ. Notice that we consider the synchrony assumption applies to parts of the execution only.

Write-latency-free read operation and interfering write. Intuitively, a read operation is write-latency-free if its execution does “not interleave” with the execution of a write operation. More precisely, let τ_r be the starting time of a read operation. This read operation is write-latency-free if (a) it is not concurrent with a write operation, and (b) the closest preceding write did not crash and started at a time $\tau_w < \tau_r - \Delta$.

Let op_r be a read operation, which started at time τ_r. Let op_w be the closest write preceding op_r. If op_w started at time $\tau_w \geq \tau_r - \Delta$, it is said to be interfering with op_r. A graphical representation of write-latency-freedom and interfering operations is depicted in Fig. 1.

\footnote{Another example of a non-functional property is quiescence. This property is on algorithms implementing reliable communication on top of unreliable networks [1]. It states that the number of underlying implementation messages generated by an application message must be finite. Hence, if there is a time after which no application process sends messages, there is a time after which the system is quiescent.}
Time-efficiency: Bounded delay-based definition. An implementation of a read/write register is time-efficient (from a bounded delay point of view) if it satisfies the following properties.

- A write operation takes at most 2Δ time units.
- A read operation which is write-latency-free takes at most 2Δ time units.
- A read operation which is not write-latency-free takes at most
 - 3Δ time units if the writer does not crash while executing the interfering write,
 - 4Δ time units if the writer crashes while executing the interfering write (this scenario can appear at most once for each process).

4 An Algorithm with Time-efficient Operations

The algorithm described in Algorithm 1 implements an SWMR atomic register in the asynchronous system model $\mathcal{CAMP}_{n,t}$ [$t < n/2$], and is time-efficient with respect to the “bounded delay”-based definition. This algorithm is voluntarily formulated to be as close as possible to ABD, for facilitating its understanding by ABD-aware readers.

Local variables. Each process p_i manages the following local variables.

- reg_i contains the value of the constructed register REG, as currently known by p_i. It is initialized to the initial value of REG (e.g., the default value \bot).
- wsn_i is the sequence number associated with the value in reg_i.
- rsn_i is the sequence number of the last read operation invoked by p_i.
- swsn_i is a synchronization local variable. It contains the sequence number of the most recent value of REG that, to p_i’s knowledge, is known by at least $(n-t)$ processes. This variable (which is new with respect to other algorithms) is at the heart of the time-efficient implementation of the read operation.
- res_i is the value of REG whose sequence number is swsn_i.

Client side: operation write() invoked by the writer. Let p_i be the writer. When it invokes $\text{REG}.\text{write}(v)$, it increases wsn_i, updates reg_i, and broadcasts the message.
Algorithm 1 Time-efficient SWMR atomic register in $CAMP_{n,t}[t < n/2]$

local variables initialization: $reg_i \leftarrow \bot; wsn_i \leftarrow 0; swsn_i \leftarrow 0; rsn_i \leftarrow 0.$

operation write(v) is
(1) $wsn_i \leftarrow wsn_i + 1; reg_i \leftarrow v; broadcast$ WRITE(wsn_i, v);
(2) wait (WRITE($wsn_i, -$) received from $(n-t)$ different processes);
(3) return();
end operation.

operation read() is % the writer may directly return reg_i %
(4) $rsn_i \leftarrow rsn_i + 1; broadcast$ READ(rsn_i);
(5) wait (msgs $STATE(rsn, -$) rec. from $(n-t)$ different proc.) ∧ ($swsn_i \geq maxwsn$)
where $maxwsn$ is the greatest seq. nb in the previous $STATE(rsn, -$) msgs);
(6) return(res_i);
end operation.

when write(wsn, v) is received do
(7) if ($wsn > wsn_i$) then $reg_i \leftarrow v; wsn_i \leftarrow wsn$ end if;
(8) if (not yet done) then broadcast WRITE(wsn_i, v) end if;
(9) if (WRITE($wsn, -$) received from $(n-t)$ different processes)
(10) then if ($wsn > swsn_i$) ∧ (not already done) then $swsn_i \leftarrow wsn; res_i \leftarrow v$ end if;
(11) end if.

when read(rsn) is received from p_j do
(12) send $STATE(rsn, wsn_i)$ to p_j.

WRITE(wsn_i, v) (line 1). Then, it waits until it has received an acknowledgment message from $(n-t)$ processes (line 2). When this occurs, the operation terminates (line 3). Let us notice that the acknowledgment message is a copy of the very same message as the one it broadcast.

Server side: reception of a message WRITE(wsn, v). When a process p_i receives a WRITE(wsn, v) message, if this message carries a more recent value than the one currently stored in reg_i, then p_i updates accordingly wsn_i and reg_i (line 7). Moreover, if this message is the first message carrying the sequence number wsn, p_i forwards to all the processes the message WRITE(wsn, v) it has received (line 8). This broadcast has two aims: to be an acknowledgment for the writer, and to inform the other processes that p_i “knows” this value.

Moreover, when p_i has received the message WRITE(wsn, v) from $(n-t)$ different processes, and wsn_i is smaller than wsn, it updates its local synchronization variable $swsn_i$ and accordingly assigns v to res_i (lines 9-11).

Server side: reception of a message READ(rsn). When a process p_i receives such a message from a process p_j, it sends by return to p_j the message $STATE(rsn_i, wsn_i)$, thereby informing it on the freshness of the last value of REG it knows (line 12). The parameter rsn allows the sender p_j to associate the messages $STATE(rsn, -$) it will receive with the corresponding request identified by rsn.

* Let us observe that, due to asynchrony, it is possible that $wsn_i > wsn$ when p_i receives a message WRITE(wsn, v) for the first time.
Client side: operation read(). When a process \(p_i \) invokes \(\text{REG.read()} \), it first broadcasts the message \(\text{READ}(rsn_i) \) with a new sequence number. Then, it waits until “some” predicate is satisfied (line 5), and finally returns the current value of \(res_i \). Let us notice that the value \(res_i \) that is returned is the one whose sequence number is \(swsn_i \).

The waiting predicate is the heart of the algorithm. Its first part states that \(p_i \) must have received a message \(\text{STATE}(rsn,−) \) from \((n−t) \) processes. Its second part, namely \((swsn_i \geq \text{maxwsn}) \), states that the value in \(p_i \)’s local variable \(res_i \) is as recent or more recent than the value associated with the greatest write sequence number \(wsn \) received by \(p_i \) in a message \(\text{STATE}(rsn,−) \). Combined with the broadcast of messages \(\text{WRITE}(wsn,−) \) issued by each process at line 8, this waiting predicate ensures both the correctness of the returned value (atomicity), and the fact that the read implementation is time-efficient.

5 Proof of the Algorithm

5.1 Termination and atomicity

The properties proved in this section are independent of the message transfer delays (provided they are finite).

Lemma 1 If the writer is correct, all its write invocations terminate. If a reader is correct, all its read invocations terminate.

Proof Let us first consider the writer process. As by assumption it is correct, it broadcasts the message \(\text{WRITE}(sn,−) \) (line 1). Each correct process broadcasts \(\text{WRITE}(sn,−) \) when it receives it for the first time (line 8). As there are at least \((n−t) \) correct processes, the writer eventually receives \(\text{WRITE}(sn,−) \) from these processes, and stops waiting at line 2.

Let us now consider a correct reader process \(p_i \). It follows from the same reasoning as before that the reader receives the message \(\text{STATE}(rsn,−) \) from at least \((n−t) \) processes (lines 5 and 12). Hence, it remains to prove that the second part of the waiting predicate, namely \(swsn_i \geq \text{maxwsn} \) (line 5) becomes eventually true, where \(\text{maxwsn} \) is the greatest write sequence number received by \(p_i \) in a message \(\text{STATE}(rsn,−) \). Let \(p_j \) be the sender of this message. The following list of items is such that item \(x \Rightarrow \text{item } (x+1) \), from which follows that \(swsn_i \geq \text{maxwsn} \) (line 5) is eventually satisfied.

1. \(p_j \) updated \(wsn_j \) to \(\text{maxwsn} \) (line 7) before sending \(\text{STATE}(rsn,\text{maxwsn}) \) (line 12).
2. Hence, \(p_j \) received previously the message \(\text{WRITE}(\text{maxwsn},−) \), and broadcast it the first time it received it (line 9).
3. It follows that any correct process receives the message \(\text{WRITE}(\text{maxwsn},−) \) (at least from \(p_j \)), and broadcasts it the first time it receives it (line 8).
4. Consequently, \(p_i \) eventually receives the message \(\text{WRITE}(\text{maxwsn},−) \) from \((n−t) \) processes. When this occurs, it updates \(swsn_i \) (line 10), which is then \(\geq \text{maxwsn} \), which concludes the proof of the termination of a read operation.
Lemma 2 The register REG is atomic.

Proof Let \(\text{read}[i, x] \) be a read operation issued by a process \(p_i \) which returns the value with sequence number \(x \), and \(\text{write}[y] \) be the write operation which writes the value with sequence number \(y \). The proof of the lemma is the consequence of the three following claims.

- **Claim 1.** If \(\text{read}[i, x] \) terminates before \(\text{write}[y] \) starts, then \(x < y \).
- **Claim 2.** If \(\text{write}[x] \) terminates before \(\text{read}[i, y] \) starts, then \(x \leq y \).
- **Claim 3.** If \(\text{read}[i, x] \) terminates before \(\text{read}[j, y] \) starts, then \(x \leq y \).

Claim 1 states that no process can read from the future. Claim 2 states that no process can read overwritten values. Claim 3 states that there is no new/old read inversions [3, 12].

Proof of Claim 1. This claim follows from the following simple observation. When the writer executes \(\text{write}[y] \), it first increases its local variable \(\text{wsn} \) which becomes greater than any sequence number associated with its previous write operations (line 1). Hence if \(\text{read}[i, x] \) terminates before \(\text{write}[y] \) starts, we necessarily have \(x < y \).

Proof of Claim 2. It follows from line 2 and lines 7-8 that, when \(\text{write}[x] \) terminates, there is a set \(Q_w \) of at least \((n - t) \) processes \(p_k \) such that \(\text{wsn}_k \geq x \). On another side, due to lines 4-5 and line 12, \(\text{read}[i, y] \) obtains a message \(\text{STATE}() \) from a set \(Q_r \) of at least \((n - t) \) processes. As \(|Q_w| \geq n - t \) and \(|Q_r| \geq n - t \), and \(n > 2t \), it follows that \(Q_w \cap Q_r \) is not empty. Hence \(Q_w \cap Q_r \) is not empty. Hence, there is a process \(p_k \) which sent \(\text{STATE}(z) \) to \(p_i \), and later sent \(\text{STATE}(-, y) \) to \(p_j \). As \(\text{swsn}_k \) never decreases, it follows that \(x \leq y \), which completes the proof of the lemma.

Proof of Claim 3. When \(\text{read}[i, x] \) stops waiting at line 5, it returns the value \(\text{res}_i \) associated with the sequence number \(\text{swsn}_i = x \). Process \(p_i \) previously received the message \(\text{WRITE}(x, -) \) from a set \(Q_{r,1} \) of at least \((n - t) \) processes. The same occurs for \(p_j \), which, before returning, received the message \(\text{WRITE}(y, -) \) from a set \(Q_{r,2} \) of at least \((n - t) \) processes.

As \(|Q_{r,1}| \geq n - t \), \(|Q_{r,2}| \geq n - t \), and \(n > 2t \), it follows that \(Q_{r,1} \cap Q_{r,2} \) is not empty. Hence, there is a process \(p_k \) which sent \(\text{STATE}(x) \) to \(p_i \), and later sent \(\text{STATE}(-, y) \) to \(p_j \). As \(\text{swsn}_k \) never decreases, it follows that \(x \leq y \), which completes the proof of the lemma.
Theorem 1 Algorithm [1] implements an SWMR atomic register in the distributed system model $CAMP_{n,t}(t < n/2)$.

Proof The proof follows from Lemma 1 (termination) and Lemma 2 (atomicity). □

5.2 Time-efficiency with respect to the bounded delay assumption

As already indicated, this underlying synchrony assumption considers that every message takes at most Δ time units. Moreover, let us remind that a read (which started at time τ_r) is write-latency-free if it is not concurrent with a write, and the last preceding write did not crash and started at time $\tau_w < \tau_r - \Delta$.

Lemma 3 A write operation takes at most 2Δ time units.

Proof The case of the writer is trivial. The message $\text{WRITE}()$ broadcast by the writer takes at most Δ time units, as do the acknowledgment messages $\text{WRITE}()$ sent by each process to the writer. In this case 2Δ correspond to a causality-related maximal round-trip delay (the reception of a message triggers the sending of an associated acknowledgment). □

When the writer does not crash while executing a write operation The cases where the writer does not crash while executing a write operation are captured by the next two lemmas.

Lemma 4 A write-latency-free read operation takes at most 2Δ time units.

Proof Let p_i be a process that issues a write-latency-free read operation, and τ_r be its starting time. Moreover, Let τ_w the starting time of the last preceding write. As the read is write latency-free, we have $\tau_w + \Delta < \tau_r$. Moreover, as messages take at most Δ time units, and the writer did not crash when executing the write, each non-crashed process p_k received the message $\text{WRITE}(x, -)$ (sent by the preceding write at time $\tau_w + \Delta < \tau_r$), broadcast it (line 8), and updated its local variables such that we have $\text{wsn}_k = x$ (lines 7-11) at time $\tau_w + \Delta < \tau_r$. Hence, all the messages $\text{STATE}()$ received by the reader p_i carry the write sequence number x. Moreover, due to the broadcast of line 8 executed by each correct process, we have $\text{wsn}_i = x$ at some time $\tau_w + 2\Delta < \tau_r + \Delta$. It follows that the predicate of line 5 is satisfied at p_i within 2Δ time units after it invoked the read operation. □

Lemma 5 A read operation which is not write-latency-free, and during which the writer does not crash during the interfering write operation, takes at most 3Δ.

Proof Let us consider a read operation that starts at time τ_r, concurrent with a write operation that starts at time τ_w and during which the writer does not crash. From the read operation point of view, the worst case occurs when the read operation is
invoked just after time \(\tau_w = \Delta \), let us say at time \(\tau_w = \tau_w - \Delta + \epsilon \). As a message \(\text{STATE}(rsn, ___) \) is sent by return when a message \(\text{READ}(rsn) \) is received, the messages \(\text{STATE}(rsn, __) \) received by \(p_i \) by time \(\tau_r + 2\Delta \) can be such that some carry the sequence number \(x \) (due to last previous write) while others carry the sequence number \(x + 1 \) (due to the concurrent write\(^4\)). Hence, \(\text{maxwsn} = x \) or \(\text{maxwsn} = x + 1 \) (predicate of line 5). If \(\text{maxwsn} = x \), we also have \(\text{swsn}_i = x \) and \(p_i \) terminates its read. If \(\text{maxwsn} = x + 1 \), \(p_i \) must wait until \(\text{swsn}_i = x + 1 \), which occurs at the latest at \(\tau_w = 2\Delta \) (when \(p_i \) receives the last message of the \((n - t) \) messages \(\text{WRITE}(y, __) \) which makes true the predicates of lines \(9[10] \) thereby allowing the predicate of line 5 to be satisfied). When this occurs, \(p_i \) terminates its read operation. As \(\tau_w = \tau_r + \Delta - \epsilon \), \(p_i \) returns at the latest \(\tau_r + 3\Delta - \epsilon \) time units after it invoked the read operation. \(\square \text{Lemma} 4 \)

When the writer crashes while executing a write operation. The problem raised by the crash of the writer while executing the write operation is when it crashes while broadcasting the message \(\text{WRITE}(x, __) \) (line 1). Some processes receive this message by \(\Delta \) time units, while other processes do not. This issue is solved by the propagation of the message \(\text{WRITE}(x, __) \) by the non-crashed processes that receive it (line 5). This means that, in the worst case (as in synchronous systems), the message \(\text{WRITE}(x, __) \) must be forwarded by \((t + 1) \) processes before being received by all correct processes. This worst scenario may entail a cost of \((t + 1) \Delta \) time units.

Algorithm 2 Time-efficient read in case of concurrent writer crash

```
when \text{WRITE}(wsvn, v) \text{ or } \text{STATE}(rsn, wsvn, v) \text{ is received do}
    3 \text{ if } (wsvn > wsn_i) \text{ then } reg_i' \leftarrow v; wsn_i \leftarrow wsvn; \text{ broadcast } \text{WRITE}(wsvn, v) \text{ end if;}
    5 \text{ if } (\text{not yet done}) \text{ then } \text{broadcast } \text{WRITE}(wsvn, v) \text{ end if;}
    8 \text{ if } (\text{WRITE}(wsvn, \_\_) \text{ received from } (n - t) \text{ different processes})
        \text{ then } \text{if } (wsvn > wsn_i) \text{ and } (\text{not already done}) \text{ then } wsn_i \leftarrow wsvn; res_i \leftarrow v \text{ end if }
    \end{if}
when \text{READ}(rsn) \text{ is received from } p_j \text{ do}
12 \text{ send } \text{STATE}(rsn, wsn_i, reg_i) \text{ to } p_j.
```

Algorithm 2 presents a simple modification of Algorithm 1 which allows a fast implementation of read operations whose executions are concurrent with a write operation during which the writer crashes. The modifications are underlined.

When a process \(p_i \) receives a message \(\text{READ}(__) \), it now returns a message \(\text{STATE}(__, wsn, v) \) containing an additional field, namely the current value of \(reg_i \), its local copy of \(\text{REG}(__, wsn, v) \) (line 12).

When a process \(p_i \) receives from a process \(p_j \) a message \(\text{STATE}(__, wsn, v) \), it uses it in the waiting predicate of line 5 but executes before the lines 7[11], as if this message was \(\text{WRITE}(wsn, v) \). According to the values of the predicates of lines 7[9],

\(^4\) Messages \(\text{STATE}(rsn, x) \) are sent by the processes that received \(\text{READ}(rsn) \) before \(\tau_w \), while the messages \(\text{STATE}(rsn, x + 1) \) are sent by the processes that received \(\text{READ}(rsn) \) between \(\tau_w \) and \(\tau_r + \Delta = \tau_w + \epsilon \).
and this allows \(p_i \) to expedite the update of its local variables \(wsni, reg, swsn_i, \) and \(res_i \), thereby favoring fast termination.

The reader can check that these modifications do not alter the proofs of Lemma 1 (termination) and Lemma 2 (atomicity). Hence, the proof of Theorem 1 is still correct.

Lemma 6 A read operation which is not write-latency-free, and during which the writer crashes during the interfering write operation, takes at most \(4\Delta \) time units.

Proof Let \(\tau_r \) be the time at which the read operation starts. As in the proof of Lemma 3, the messages \(\text{STATE}(rsn, -,-) \) received by \(p_i \) by time \(\tau_r + 2\Delta \) can be such that some carry the sequence number \(wsn = x \) (due to last previous write) while some others carry the sequence number \(wsn = x + 1 \) (due to the concurrent write during which the writer crashes). If all these messages carry \(wsn = x \), the read terminates by time \(\tau_r + 2\Delta \). If at least one of these messages is \(\text{STATE}(rsn,x+1,-) \), we have \(\maxwsn = x + 1 \), and \(p_i \) waits until the predicate \(swn_s \geq \maxwsn \) (\(= x + 1 \)) becomes true (line 5).

When it received \(\text{STATE}(rsn, x + 1, -) \), if not yet done, \(p_i \) broadcast the message \(\text{WRITE}(rsn, x + 1, -) \), (line 8 of Algorithm 2), which is received by the other processes within \(\Delta \) time units. If not yet done, this entails the broadcast by each correct process of the same message \(\text{WRITE}(rsn, x + 1, -) \). Hence, at most \(\Delta \) time units later, \(p_i \) has received the message \(\text{WRITE}(rsn, x + 1) \) from \((n-t)\) processes, which entails the update of \(swn_s \) to \((x + 1) \). Consequently the predicate of line 5 becomes satisfied, and \(p_i \) terminates its read operation.

When counting the number of consecutive communication steps, we have: The message \(\text{READ}(rsn) \) by \(p_i \), followed by a message \(\text{STATE}(rsn, x + 1, -) \) sent by some process and received by \(p_i \), followed by the message \(\text{WRITE}(rsn, x + 1) \) broadcast by \(p_i \), followed by the message \(\text{WRITE}(rsn, x + 1) \) broadcast by each non-crashed process (if not yet done). Hence, when the writer crashes during a concurrent read, the read returns within at most \(\tau_r + 4\Delta \) time units. \(\Box \)

Theorem 2 The algorithm described in Algorithm 1 modified as indicated in Algorithm 2 implements a time-efficient SWMR atomic register in the distributed system model \(\textsc{CAMP}_{n,t} [t < n/2] \).

Proof The proof follows from Theorem 1 (termination and atomicity), Lemma 3, Lemma 4, Lemma 5 and Lemma 6 (time-efficiency). \(\Box \)

6 Practical Implications: a System’s Viewpoint

The algorithm presented in this paper shares many similarities with the well-known ABD algorithm. ABD is at the basis of real-life implementations of scalable replicated storage services used in today’s large data centers and clouds, and distributed shared memory systems. Keeping as close as possible to the design ideas of the original algorithm eases the integration of the proposed ideas in implemented systems.
While the notion of a time-efficient algorithm has a theoretical interest—the lower bounds and the worst cases are not the “end of the road”—its practical implication is much more important.

In all possible scenarios that may happen in an actual execution, the worst case scenarios in terms of message transfer delays and asynchrony patterns are usually rare. From a practical viewpoint, it is more important to optimize cases that occur regularly than just focus on those worst case scenarios. What we show with this algorithm is that it possible to match the lower bound, whatever asynchrony pattern happens in the system, and still provide a fast and time-efficient solution when the system is more synchronous. The price to pay for optimizing those good cases is an increase of the message complexity of a write operation, making the algorithm well suited for read-dominated applications that run on almost always synchronous systems.

Indeed, many real-life systems experience lots of “stability” periods during which the results described in this paper apply—cloud systems deployed by Google, Apple, Facebook, Amazon and Microsoft run on dedicated in-house hardware solutions, and are not purely asynchronous. With regards to IoT applications, sensor networks usually have a synchronous mode of operation in order to reduce energy consumption: a Time-Division Multiple Access (TDMA) communication scheme allows sensors to sleep most of the time and wake up at predefined time slots to communicate.

7 Conclusion

This work presented a new distributed algorithm that implements an atomic read/write register on top of an asynchronous \(n \)-process message-passing system in which up to \(t < n/2 \) processes may crash. When designing it, the constraints we imposed on this algorithm were (a) from an efficiency point of view: provide time-efficient implementations for read and write operations, (b) and from a design principle point of view: remain “as close as possible” to the flagship ABD algorithm introduced by Attiya, Bar-Noy and Dolev.

Table 1 recapitulates the “time-efficiency” property of the proposed algorithm. Under the “upper bound \(\Delta \) on message transfer delays”, any write operation takes then at most \(2\Delta \) time units, and a read operation takes at most \(2\Delta \) time units when executed in good circumstances (i.e., when there is no write operation concurrent with the read operation). Hence, the inherent cost of an operation is a round-trip delay, always for a write and in favorable circumstances for a read. A read operation concurrent with a write operation during which the writer does not crash, may require an additional cost of \(\Delta \), which means that it takes at most \(3\Delta \) time units. Finally, if the writer crashes during a write concurrent with a read, the read may take at most \(4\Delta \) time units. This shows clearly the incremental cost imposed by the adversaries (concurrency of write operations, and failure of the writer).

It is important to remind that the proposed algorithm remains correct in the presence of any asynchrony pattern. Its time-efficiency features are particularly interesting when the system has long synchrony periods.
Table 1 Summary for the upper bound delay assumption

<table>
<thead>
<tr>
<th>Operation Type</th>
<th>Upper Bound Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write operation</td>
<td>2Δ</td>
</tr>
<tr>
<td>Read operation (no concurrent write)</td>
<td>2Δ</td>
</tr>
<tr>
<td>Read operation (concurrent write)</td>
<td>3Δ</td>
</tr>
<tr>
<td>Read operation (conc. crashing write)</td>
<td>4Δ</td>
</tr>
</tbody>
</table>

Differently from the proposed algorithm, the ABD algorithm does not display different behaviors in different concurrency and failure patterns. In ABD, the duration of all write operations is upper bounded by 2Δ time units, and the duration of all read operations is upper bounded by 4Δ time units. The trade-off between ABD and our algorithm lies in the message complexity, which is $O(n)$ in ABD for both read and write operations, while it is $O(n^2)$ for a write operation and $O(n)$ for a read operation in the proposed algorithm. Hence our algorithm is particularly interesting for registers used in read-dominated applications run on systems that are often synchronous.

Acknowledgments

The authors want to thank the referees for their constructive comments. This work has been partially supported by the Franco-German DFG-ANR Project DISCMAT (DFG-ANR 40300781) devoted to connections between mathematics and distributed computing, and the French ANR project DESCARTES (ANR-16-CE40-0023-03) devoted to distributed software engineering.

References

