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Abstract: The crystallographic anisotropy of the lateral selective thermal oxidation of 
AlGaAs alloys is experimentally studied. The anisotropic behavior of this oxidation process, 
used primarily for building a lateral confinement in vertical surface emitting lasers (VCSEL), 
is quantified by varying different process parameters and the geometrical shapes of laterally 
oxidized mesa structures. This experimental study aims to have a better control of the oxide 
aperture shape used in oxide-confined photonics devices. 
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1. Introduction

In many different AlGaAs-based photonic and optical devices, the selective oxidation of an 
Al-rich layer is a very efficient way to create a lateral electrical and optical confinement. The 
degree of confinement can thus be adjusted with the position in the stack and the lateral depth 
of the oxide within the structure. It is then of primary importance to control the lateral 
spreading of the oxidation reaction and this in all the crystallographic directions in order to 
define the waveguide properties in all three directions. If the vertical confinement can be 
designed through the choice of the index profile of the epitaxial multilayers, in the lateral 
directions (in the plane of the epilayers) only the kinetics of the selective oxidation controls 
the waveguide dimensions. 

The crystallographic anisotropy in the reaction of wet thermal oxidation of Al(Ga)As is 
well known since the discovery of this process in the early 1990s’ and, in particular, leads to 
an aperture shape which differs from the etched mesa from which the oxidation proceeds [1–
3]. 

In oxide-confined Vertical-Cavity Surface-Emitting Lasers (VCSEL), an asymmetric 
shape of the confinement aperture has a strong impact on the properties of the output laser 
beam, positively as it may be a way to stabilize the polarization, or detrimentally as it 
modifies the transverse modes compared to a perfectly circular waveguide. 

The polarization stabilization of the air-post (circular mesa, (100)-oriented) VCSEL 
emission has been a significant issue for many years because their quasi-symmetric geometry 
prevents the pinning of the beam polarization on a given direction. As a result, uncontrolled 
polarization switches can occur thereby reducing the device usefulness for many applications, 
in particular in optical communications. Several solutions have been proposed to solve this 
important issue, for example by introducing an asymmetric confinement by oxide or 
implantation [4], or by introducing a (polarizing) optical grating on the VCSEL surface [5]. 
Should the oxidation of the AlGaAs confinement layer be finely controlled in all the lateral 
directions, one could use an anisotropic shape of the oxide aperture to impose a polarization-
stable emission. This has been practically achieved by oxidizing through etched holes 
appropriately located around the final aperture [6]. Some papers report on anisotropic elliptic 
aperture shapes that result in a preferential orientation of the laser mode profile in the 
direction of semi-major axis [7]. Some modelling works have considered the non-cylindrical 
oxide confinement, showing the incidences on the modal properties [8–10]. 

All these demonstrations, which reveal the strong importance of controlling the shapes of 
the area confined by the lateral oxidation, have been done by adapting the initial geometry of 
the etched pattern from which the lateral oxidation expands. This fine tuning of the mesa 
geometry leading to a given fixed shape of the oxide-confined waveguide can however be 
complex to implement. 

In this paper, we complement the reported study on the anisotropy of the lateral oxidation 
of AlAs [11] by providing further experimental data on the oxidation of (<~100 nm)-thin 
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AlGaAs layers to be in a position to make AlOx-based devices presenting controlled aperture 
shapes. In particular, the time evolution of the aperture shape is accurately extracted all along 
the oxidation process, providing useful insights on the kinetics of the oxidation reaction vis-à-
vis its anisotropic behavior. We also explore the influence of the process parameters to 
establish the conditions which can lead to a more isotropic behavior. 

2. Anisotropy in the AlOx process 

The anisotropy of the oxidation process of AlGaAs compounds has been the subject of very 
few studies in spite of its high relevance for the photonic devices applications. It was first 
observed in [12] as a result of the exposure of thick AlAs/AlGaAs stacks to ambient air at 
room temperature for several years. The resulting oxidation/hydrolization of the Al-rich 
layers originating from point defects led to three-dimensional oxide boundaries that tend to be 
facetted on high-index plane crystallographic surfaces. A more specific study of the 
anisotropy was performed in [11]. The angular dependence of oxidation rates was measured 
for thin layers of AlAs grown on different substrate orientations, showing higher oxidation 

rates for the <100>, [111]  and [111]  directions that correspond to the planes with metallic 

bonds. They also reported the influence of the oxidation temperature on the anisotropy, 
showing more isotropic behavior at low temperatures. These crystallographic effects, 
resulting in a higher oxidation rate along the <100> axes compared to <110> for AlAs, is 
consistent with the observations made in [13] where the different surface reactivity of oxygen 
atoms are showed to influence the oxidation of GaAs. 

A well-known parameter impacting the anisotropy of the oxidation process is the 
composition of the alloy to-be-oxidized. For AlxGa1-xAs compounds, the process is found to 
become perfectly isotropic for Ga composition higher than 8% [3]. This composition effect 
can be explained by a modification of the neighbor atoms configuration in AlxGa1-xAs 
becoming significant for x>0.92. 

Additionally, the oxidation rates can be affected by the mechanical stress resulting from 
the volumic shrinkage (of more than 10% for AlAs layers) that occurs during the oxidation. 
As an example, the shape of the oxidation front can be strongly modified by the strain-
induced at the AlAs/AlOx interface as presented in [14]. This effect gives rise, for thick 
oxidized layers (>100 nm), to a strongly anisotropic oxidation front, which takes the form of a 
wedge whose interface is tilted of about 60° with respect to the wafer plane. 

3. Experimental setup 

The samples used in this study consist of a stack comprising a 70 nm AlAs or Al0.98Ga0.02As 
capped with a 30 nm GaAs layer. This heterostructure is non-intentionally doped (NID) and 
grown by molecular beam epitaxy (Riber 412) under standard conditions (temperature, 
growth rate) on a NID (100) GaAs substrate. 

The lateral selective oxidation of the (Al)GaAs layers is performed after an optical 
microlithography step to define the geometrical shape of the mesas. The spin-coated and 
lithographically-exposed SPR700 photoresist serves then as a mask for the subsequent 
etching step carried out by inductively-coupled plasma reactive-ion etching (ICP-RIE) in 
order to form the mesas thus releasing the sidewalls of the (Al)GaAs layer. This etching step 
is followed by a careful resist removal, and a surface cleaning with a diluted HCl solution 
(30s in HCl/H2O 1:10) just before loading the sample in the oxidation chamber. This 
preparation is of prime importance to ensure reproducible surface conditions, and thus the 
repeatability of the start of the oxidation mechanisms. 

The wet thermal oxidation is undertaken in a closed chamber under stabilized low 
pressure (in the 2-500 mbar range), where a controlled and constant mixed gas composed of 
water and forming gas (N2/H2 95/5%) is flown (AET Technologies). Both gas and liquid inlet 
flows are controlled by mass flow controllers, and the mixed moisture gas is generated by a 
CEM Bronkhorst system. 
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Figure 2 depicts the time dependence measured for the inward oxidation of a 70-nm-thick 
AlAs layer carried out up to the full oxide closure from a 60-µm-diameter circular mesa. As 
previously reported and described by several papers [16,17], the oxidation evolves linearly, 
but tends to slightly accelerate when the aperture is about to close up. This effect, which 
deteriorates the process reproducibility when small apertures are targeted, is typical for mesa 
geometries for which the oxidizing front surface decreases against process time and can be 
reproduced by modelling [16–19]. This final stage acceleration varies with the process 
temperature and the oxidized layer thickness. In terms of anisotropy, Fig. 1 and 2.left show 
that the oxidation depths along the <100> and <110> directions differ and that their 
difference increases with oxidation time up to a time where the aperture size is about half that 
of the etched mesa. Beyond that point, the latter difference diminishes as a result of the 
reduction in oxide aperture size. Analyzing the oxide aperture shape in terms of the above-
defined square fraction and taking into account the fact that the oxide contour can only be 
accurately determined for radii greater than ~5 µm (because of the monitoring system optical 
resolution), it becomes clear (see Fig. 2.right) that the oxidation reaction along the rapid 
crystal planes ({100}) prevails and forms an increasingly-square aperture whose edges are 
aligned to these preferential directions. 

 

Fig. 2. left: Evolution during the process time of the oxidation depth along the <110> and 
<100> crystallographic directions for oxidations of a 70-nm-thick AlAs layer carried out from 
30µm-radius mesa at a temperature of 400 and 420°C, a pressure of 500 mbar and a water flow 
of 5 g/h, and, right, associated anisotropy analysis in terms of square fraction. 

This study is furthered by investigating the influence of the mesa geometry on the oxide 
aperture shape. In addition to straight ridges, two main cases have been considered: circular 
air-post mesas and etched holes whose radius is varied up to 100 µm. 

The variation of the oxidation depths on these different geometries is reported on Fig. 3, 
as the function of the inversed radius, with negative values for etched holes, null value for 
straight stripe mesas, and positive values for air-post mesas. All these data points were 
measured on a set of mesas after a single 36-minute-long oxidation of an AlAs layer 
performed in standard conditions (400°C at 500 mbar). 
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Fig. 3. Oxidation depth evolution (a), and square fraction (s) against inverted radius of the 
mesa (b) (negative values of the radius is taken for etched holes) 

Figure 3 shows that both the kinetics and the oxide front shape are strongly dependent on 
the initial mesa size. This variation could be assimilated to a linear dependence of the 
oxidation depth with the inverted initial mesa radius, with different slopes whether the mesa 
is air-post mesa or an etched hole. This difference in the kinetics between the both mesa 
configurations can be explained by a reaction-limited kinetic in the air-post configuration and 
by a diffusion-limited kinetic in the etched hole case. 

As depicted on Fig. 3(b), the oxide aperture anisotropy also varies with the initial mesa 
radius. The evolution of the square fraction vs the inversed mesa radius is strongly 
asymmetric between air-post mesas and etched holes. For the air-post mesas, the aperture 
evolves rapidly to a square shape for small mesa diameters, while the oxidation from an etch 
holes has a much weaker variation towards square shape as the initial hole radius reduces. 

Finally, we investigated the influence of the process parameters on the anisotropy. Once 
again, we capitalize upon the above-described experimental setup which enables a large 
number of process parameters such as the temperature, the moisture gas flow and the pressure 
of the oxidation chamber to be controllably varied. However, in this study, the to-be-oxidized 
layer was made of Al0.98Ga0.02As (rather than an AlAs) since the former composition is the 
most commonly used in VCSEL fabrication and since the properties of the oxidation 
anisotropy seem to only be affected in magnitude. 

The temperature, as shown in [11], has an important influence on the oxidation kinetics as 
it impacts simultaneously the chemical and the diffusion mechanisms of the oxidation 
process. We monitored the anisotropy of the aperture resulting from the oxidation of circular 
mesas as a function of temperature as shown on Fig. 4. 

The results show the degree of anisotropy (i.e. square fraction s) of 6-µm-mean-diameter 
apertures starting from circular 35-µm-diameter mesas, when varying the temperature and the 
furnace chamber pressure. The temperature is not absolute as it is measured with a 
thermocouple placed in the heating susceptor holding the sample. 

Figure 4 clearly shows a decreasing asymmetry in the aperture shape as the temperature 
increases. This result appears to contradict the results reported by Vaccaro [11], but might be 
explained by the fact that the composition of the oxidized layer is different (Al0.98Ga0.02As 
here whilst it was AlAs in [11]) and effects related to the shape and size of the oxidized mesas 
(which are not explicitly mentioned in [11]). 

We have also studied the impact on the anisotropy of other process-related parameters 
such as the chamber pressure (in the range of 4 to 800 mbar) and the moisture gas flow as 
these parameters have a large influence on the AlGaAs oxidation rate. If the chamber pressure 
and the process degree of anisotropy seemed to be uncorrelated, the moisture gas composition 
was seen to have a weak influence on the anisotropy (see inset of Fig. 4), with slightly more 
isotropic behavior observed for low water-vapor contents. 
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