R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, VLDB'94, Proceedings of 20th International Conference on Very Large Data Bases, pp.487-499, 1994.

M. R. Alvarez, P. Félix, C. , and P. , Discovering metric temporal constraint networks on temporal databases, Artificial Intelligence in Medicine, vol.58, issue.3, pp.139-154, 2013.
DOI : 10.1016/j.artmed.2013.03.006

G. Carrault, M. O. Cordier, R. Quiniou, M. Garreau, J. J. Bellanger et al., A Model-Based Approach for Learning to Identify Cardiac Arrhythmias, Artificial Intelligence in Medicine: Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making, AIMDM'99, pp.165-174, 1999.
DOI : 10.1007/3-540-48720-4_18

N. P. Carreté and J. Aguilar-martin, Controlling selectivity in nonstandard pattern recognition algorithms, IEEE Transactions on Systems, Man, and Cybernetics, vol.21, issue.1, pp.71-82, 1991.
DOI : 10.1109/21.101138

D. Cram, B. Mathern, and A. Mille, A complete chronicle discovery approach: application to activity analysis, Expert Systems, vol.42, issue.4, pp.321-346, 2012.
DOI : 10.1111/j.1468-0394.2011.00591.x

URL : https://hal.archives-ouvertes.fr/hal-01354577

Y. Dauxais, T. Guyet, D. Gross-amblard, and A. Happe, Discriminant chronicles mining -application to care pathways analytics, 16th Conference on Artificial Intelligence in Medicine, pp.234-244, 2017.
DOI : 10.1007/978-3-319-59758-4_26

URL : https://hal.archives-ouvertes.fr/hal-01568929

C. Dousson, Extending and unifying chronicle representation with event counters, Proceedings of the 15th Eureopean Conference on Artificial Intelligence, pp.257-261, 2002.

C. Dousson, L. Maigat, and P. , Chronicle recognition improvement using temporal focusing and hierarchization, IJCAI 2007 Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp.324-329, 2007.

M. Ester, H. P. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), pp.226-231, 1996.

T. Guyet and R. Quiniou, Extracting temporal patterns from interval-based sequences, IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp.1306-1311, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00618444

M. Mangin, A. Valade, A. Costes, A. Bouillod, P. Acco et al., An Instrumented Glove for Swimming Performance Monitoring, Proceedings of the 3rd International Congress on Sport Sciences Research and Technology Support, pp.1-7, 2015.
DOI : 10.5220/0005609100530058

H. Mannila, H. Toivonen, and A. I. Verkamo, Discovering frequent episodes in sequences, Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-95), pp.210-215, 1995.

B. Morin and H. Debar, Correlation of Intrusion Symptoms: An Application of Chronicles, Recent Advances in Intrusion Detection: 6th International Symposium , RAID 2003, pp.94-112, 2003.
DOI : 10.1007/978-3-540-45248-5_6

Y. Pencolé and A. Subias, A chronicle-based diagnosability approach for discrete timed-event systems: Application to web-services, Journal of Universal Computer Science, vol.15, issue.17, pp.3246-3272, 2009.

A. Subias, L. Travé-massuyès, L. Corronc, and E. , Learning chronicles signing multiple scenario instances, 19th World Congress of The International Federation of Automatic Control, pp.10397-10402, 2014.
DOI : 10.3182/20140824-6-ZA-1003.02579

URL : https://hal.archives-ouvertes.fr/hal-01162866