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Simultaneous System Design and Path Planning:
A Sampling-based Algorithm

Kevin Molloy1, Laurent Denarie1, Marc Vaisset1, Thierry Siméon 1 and Juan Cortés1

Abstract
This paper addresses the simultaneous design and path planning problem, in which features associated to the
bodies of a mobile system have to be selected to find the best design that optimizes its motion between two given
configurations. Solving individual path planning problems for all possible designs and selecting the best result would
be a straightforward approach for very simple cases. We propose a more efficient approach that combines discrete
(design) and continuous (path) optimization in a single stage. It builds on an extension of a sampling-based algorithm,
which simultaneously explores the configuration-space costmap of all possible designs aiming to find the best path-
design pair. The algorithm filters out unsuitable designs during the path search, which breaks down the combinatorial
explosion. Illustrative results are presented for relatively simple (academic) robotic examples, showing that even in
these simple cases, the computational cost can be reduced by two orders of magnitude with respect to the naı̈ve
approach. A preliminary application to challenging problems in computational biology related to protein design is also
discussed at the end of the paper.
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1 Introduction

System design and path-planning problems are usu-
ally treated independently. In robotics, criteria such as
workspace volume, workload, accuracy, robustness, stiff-
ness, and other performance indexes are treated as part
of the system design (Vijaykumar et al. 1986; Gosselin
and Angeles 1991; Merlet 2005). Path planning algorithms
are typically applied to systems with completely fixed
geometric and kinematic features. In this work, we propose
an extension of the path planning problem, in which some
features of the mobile system are not fixed a priori, and
can be selected among a finite number of combinations.
The goal is to find the best design (i.e. values for the
variable features) to optimize the motion between given
configurations.

A brute-force approach to solve this problem would
involve individually solving motion planning problems
for all possible designs, and then selecting the design
providing the best result for the (path-dependent) objective
function. However, because of the combinatorial explosion,
only simple problems involving a small number of
variable design features can be treated using this naı̈ve
approach. We propose a more sophisticated approach
that simultaneously considers system design and path
planning. A related problem is the optimization of
geometric and kinematic parameters of a robot to achieve

a given end-effector trajectory, usually referred to as
kinematic synthesis (McCarthy and Joskowitz 2001), or
the reachability of desirable goal regions in cluttered
workspaces (Baykal et al. 2015; Baykal and Alterovitz
2017). Nonetheless, the problem we address in this work
(see Section 2.1 for details) is significantly different, since
we assume that all kinematic parameters and part of the
geometry of the mobile system are provided as input.
The design concerns a discrete set of features that can be
associated to the bodies of the mobile system, such as shape
or electrostatic charge, aiming to find the best possible
path between two given configurations provided a path cost
function. Very few works have considered such a hybrid
design and path planning problem. One of the rare examples
is a recently proposed method for aerial vehicle path
planning (Rudnick-Cohen et al. 2015) where the optimal
path planning algorithm considers several possible flying
speeds and wing reference areas to minimize path risk
and time. Since the considered configuration space is two-
dimensional, the proposed solution is based on an extension
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of Dijkstra’s algorithm working on a discrete representation
of the search-space. This type of approach cannot be
applied in practice to higher-dimensional problems, as the
ones we address.

Sampling-based algorithms have been developed since
the late 90s for path planning in high-dimensional
spaces (Kavraki et al. 1996; LaValle 2006), which are out
of reach for deterministic, complete algorithms. Our work
builds on this family of algorithms, which we extend to treat
a combinatorial component in the search-space, associated
to the systems design, while searching for the solution path.

Our approach presents some similarities with methods
that extend sampling-based path planning algorithms to
solve more complex problems such as manipulation
planning (Siméon et al. 2004), multi-modal motion
planning (Hauser and Latombe 2010) or minimum
constraint removal planning (Hauser 2014), which also
involve search spaces with hybrid structures. As in
these other works, the proposed algorithm simultaneously
explores multiple sub-spaces, aiming to find solutions
more efficiently. Nevertheless, the hybrid design problem
addressed here is different.

This paper presents the Simultaneous Design and
Path-planning algorithm (SDAP), which is based on the
Transition-based Rapidly-exploring Random Tree (T-RRT)
algorithm (Jaillet et al. 2010). As explained in Section 2.3,
the choice of T-RRT as a baseline is guided by the type
of cost function we apply for the evaluation of path
quality. Nevertheless, other sampling-based algorithms can
be extended following a similar approach. In particular,
algorithms with optimality properties such as other variants
of Rapidly-exploring Random Tree (RRT*) (Karaman and
Frazzoli 2011), Stable Sparse-RRT* (SST*) (Li et al. 2016)
or Fast Marching Tree (FMT*) (Janson et al. 2015) could
be possible alternatives for some classes of problem.

We demonstrate the good performance of the method on
relatively simple, academic examples (Section 4). These
simple examples allow us to apply the naı̈ve exhaustive
method, whose results can be used as a reference to evaluate
the performance and the quality of the solutions produced
by the SDAP algorithm. Results show that SDAP is able
to find the best path-design pairs, requiring much less
computing time than the naı̈ve method. This advantage
increases with the complexity of the problem.

Although the application of the proposed approach
to problems of practical interest is out of the scope
of this paper, we note that our motivation comes from
problems in computational biology. For more than a decade,
robotics-inspired algorithms have been applied to this
area (Moll et al. 2007; Al-Bluwi et al. 2012; Gipson
et al. 2012; Shehu 2013). The method presented in this
paper aspires to solve problems related to computational
protein design (Keating 2013; Donald 2011), which aims

to create or modify proteins to exhibit some desired
properties. Progress in this field promises great advances in
pharmacology, biotechnology, and nanotechnology. Protein
design is extremely challenging, and although there have
been some considerable strides in the last years (Privett
et al. 2012; Tinberg et al. 2013), the problem remains
largely open. Current approaches focus on a static picture
(i.e. search the amino-acid sequence that stabilizes a given
structure), whereas dynamic aspects related to protein
function are rarely considered. Our goal behind this work
is to develop new methods to optimize functional protein
motions. Flexible regions of a protein known as loops play
instrumental roles in protein motion, and therefore, protein
function. Section 5 presents a preliminary investigation on
the application of the proposed method to designing a loop
region in order to facilitate the transition of the protein
between two stable states. In addition to computational
protein design, applications of the proposed approach in
robotics can be envisioned and are briefly mentioned in the
conclusion (Section 6).

2 Problem Formulation and Approach

This section defines the problem addressed in this work,
along with some notation, and presents an overview of the
proposed approach.

2.1 Problem Definition
Let us consider an articulated linkage A consisting of n
rigid bodies, A1..An. The kinematic parameters of A are
static and are supplied as input. The geometry of the rigid
bodies Ai can admit some variability, as well as other
physical properties (mass, electrostatic charge, ...). More
precisely, a discrete set of m design features, f1..fm, is
defined and each body Ai ∈ A is assigned a design feature
fj ∈ F . We denote d as a vector of length n that represents
the design features assigned to all the rigid bodies in A,
i.e. d defines a particular design. D denotes the set of
possible combinations of assignments of features forA, i.e.
D defines all possible designs.D is referred to as the design
space, which is a discrete space containing mn elements.
A given configuration of A is denoted by q. Let C denote
the configuration space. Note that for each q ∈ C, only a
subset of the possible designs D can be assigned, since
some designs are not compatible with some configurations
due to self-constraints or environment constraints.

The workspace of A is constrained by a set of
obstacles Oi ∈ O. Note that the problem formulation
could be extended to the design of the workspace, by
associating a discrete set of design features to each obstacle.
Nevertheless, for the sake of clarity, we consider in this
paper that the obstacles have fixed features.
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Cdfree denotes all valid collision-free configurations of A
for a given vector d of design features. A path P connecting
two configurations qinit and qgoal of A with design d is
defined as a continuous function P : [0, 1]→ C, such that
P (0) = qinit and P (1) = qgoal. The path is said to be
collision-free if ∀t ∈ [0, 1], P (t) ∈ Cdfree. Cfree is the union
of all individual Cdfree:

Cfree =
⋃
d∈D

Cdfree .

Pfree denotes the set of all feasible, collision-free paths
connecting qinit to qgoal, considering all possible designs
(∀d ∈ D).

A cost function c : Cfree ×D → R associates to each
pair {q, d} a cost value, ∀q ∈ Cfree and ∀d ∈ D. We define
a costmap as the representation of the cost function on
the configuration space of A for each design. Another
cost function cP : Pfree ×D → R is defined to evaluate
the quality of paths. In this work, the path cost function
cP is itself a function of the configuration cost function
c, i.e. cP is a functional. More precisely, we consider
the mechanical work criterion as defined in (Jaillet et al.
2010; Devaurs et al. 2016) to evaluate paths, which aims
to minimize the variation of the configuration cost c along
the path. This criterion is a suitable choice to evaluate
path quality in many situations (Jaillet et al. 2010), and is
particularly relevant in the context of molecular modeling.
Nevertheless, other cost functions can be considered, such
as the integral of c along the path. A discrete approximation,
with constant step size δ = 1/l, of the mechanical work
(MW) cost of a path P for a system design d can be defined
as:

cP (P, d) =
l∑

k=1

max

{
0 , c

(
P

(
k

l

)
, d

)
− c

(
P

(
k − 1

l

)
, d

)}
.

(1)
The goal of our method is to find the best pair {P ∗, d∗}
such that:

cP (P ∗, d∗) = min{cP (P, d) |P ∈ Pfree, d ∈ D}. (2)

2.2 Illustrative examples
Figure 1 presents a simple example to help understand
the problem formulation. In this case, the articulated
mechanism A involves three bodies, in addition to the base
and the end effector. The are three possible choices (design
features f1, f2, f3) for the shape of each body Ai. Thus, the
number of possible designs is 33 = 27. A cost function c
is defined as the inverse of the minimum distance between
the robot bodies and the obstacles. With the aim of favoring
motions of the robot far from obstacles, cP can be defined
as the integral of c along the path between qinit and qgoal. In
this simple example, it is easy to figure out that the optimal
design is d∗ = [f1, f2, f1].

f
3

q

q

goal

1
f

init

f
2

Figure 1. Simple illustrative example of a simultaneous
system design and path planning problem. There are three
possible choices (design features) for each body of the robot.
The best design, which optimizes a clearance-based cost
function, is represented in blue.

Another simple example, presented in Section 4.1, will
be used for a first proof of concept. In this other example,
the design features do not involve the shape of the mobile
system, but the electrostatic charge of each body. The
objective is to minimize the cumulative variation of a
potential energy function along the solution path.

2.3 Approach
A naı̈ve approach to solve the problem would be to compute
the optimal cost path for each design d ∈ D, and then
choose the optimal design d∗ that minimizes cP . Such a
brute-force approach can be applied in practice to simple
problems involving a small number n of variable bodies
and/or a few m design features (recall that the design space
is size mn). The method proposed below aims to solve
the problem much more efficiently by combining both the
discrete (design) and continuous (path) optimization in a
single stage.

We assume that, for most problems of interest,
the configuration space C is high-dimensional, so that
exact/complete algorithms cannot be applied in practice
to solve the path-planning part of the problem. For this,
we build on sampling-based algorithms (LaValle and
Kuffner 2001; Kavraki et al. 1996), which have been very
successful in the robotics community since the late 90s,
and which have also been applied in other areas such as
computational biology (Moll et al. 2007; Al-Bluwi et al.
2012; Gipson et al. 2012; Shehu 2013). We also assume that
the cardinality of the design space D is moderately high,
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such that a relatively simple combinatorial approach can be
applied to treat the design part of the problem.

The idea is to explore Cfree to find paths between qinit
and qgoal simultaneously considering all possible deigns
d ∈ D. To reduce the number of configuration-design pairs
{q, d} to be evaluated during the exploration, it is important
to apply an effective filtering strategy. The choice of
the particular sampling-based path planning algorithm and
filtering strategy mainly depend on the type of objective
function cP being considered. The approach described
below has been developed to find good-quality solutions
with respect to the MW path evaluation criterion (1). In this
work, we extend the T-RRT algorithm (Jaillet et al. 2010),
which finds paths that tend to minimize cost variation
by filtering during the exploration tree nodes that would
produce a steep cost increase. Following a similar approach,
alternative algorithms and the associated filtering strategies
could be developed to optimize other path cost functions.
For instance, variants of RRT* (Karaman and Frazzoli
2011) or FMT* (Janson et al. 2015) could be considered
for optimizing other types of monotonically increasing cost
functions.

3 Algorithm
This section presents the SDAP algorithm, building on a
single-tree version of T-RRT. However, the approach is
directly applicable to multi-tree variants (Devaurs et al.
2014). First, the basic algorithm is introduced, followed by
additional explanation of the tree extension strategy and a
brief theoretical analysis.

3.1 SDAP Algorithm
The SDAP pseudo-code is shown in Algorithm 1. A search
tree, T , is created with qinit as the root node. The tree is
grown in configuration space through a series of expansion
operations. Each node s in T encodes a configuration q
and a set of designs D ⊆ D for which the configuration
is valid, and which have not been filtered out in previous
iterations for the construction of corresponding branches
of the tree. In other words, each node’s set of designs
D is a subset of its parent’s designs, i.e. Designs(s) ⊆
Designs(Parent(s)). This is essential to reduce the
number of designs evaluated during the exploration. The
algorithm keeps iterating until the goal configuration qgoal
is reached for at least one of the designs, or a maximum
number of iterations is performed.

At each iteration, a random configuration qrand is
generated (line 3). In T-RRT, a new node qnew is created
by expanding the nearest node in T qnear in the direction
of qrand for a distance δ. qnew is then conditionally added
to T based on a transition test. A common heuristic for
this transition test is the Metropolis criterion, traditionally

Algorithm 1: SDAP Algorithm
input : the configuration space C; the design space D;

the cost function c; the start state qinit; the goal state qgoal;
maximum number of iterations MaxIter

output: the tree T
1 T ← InitTree(qinit, D)
2 while not StoppingCriterion (T , qgoal,MaxIter) do
3 qrand ←Sample(C)
4 Neighbors← NearestNeighbors(T , qrand,D)
5 TransitionTest.Init()
6 for snear ∈ Neighbors do
7 qnew ← Extend(qrand, snear)
8 D ← TransitionTest(T , snear, qnew, c)
9 if NotEmpty(D) then

10 AddNode(T , snear, qnew, D)

applied in Monte Carlo methods (Metropolis et al. 1953).
Transitions to lower cost nodes are always accepted and
moves to higher costs nodes are probabilistically accepted.
The probability to transition to a higher cost node is
controlled by a temperature variable T . T-RRT dynamically
controls T , as explained in the next section.

SDAP modifies the expansion and transition test
functions of the standard T-RRT algorithm in order
to address the design and path planning problems
simultaneously. At each iteration, SDAP attempts to expand
at least one node per design in D. The process is shown in
Figure 2, where each design d ∈ D is encoded as a color
on each node of the tree. During each iteration, SDAP
expands a set of nodes that covers all designs D. In other
words, the NearestNeighbors function (line 4) returns
a set, Neighbors, containing the closest node to qrand for
each design. In Figure 2, qrand is shown in black and the 3
nodes in the set Neighbors are circled in red. Each node in
Neighbors is extended towards qrand (lines 6 - 10) creating
new candidate nodes which are labeled s1, s2 , and s3 in
Figure 2. All 3 designs in s1 fail the transition test, so the
new node is not added to T . For s2 the blue design passes
the transition test and the node is added to T . Finally for s3,
1 of the 3 designs (yellow) fails the transition test, resulting
in a node with 2 designs being added to T . Such a filtering
of designs during the construction of the exploration tree is
the key to SDAP’s good performance.

3.2 Controlling Tree Expansion
The transition test is governed by the temperature parameter
T . T-RRT automatically adjusts T during the exploration
and has been shown highly effective in balancing tree
exploration and tree refinement (Jaillet et al. 2010). At each
iteration, T-RRT adjusts T by monitoring the acceptance
rate of new nodes. SDAP extends this idea by maintaining a
separate temperature variable T (d) for each design d ∈ D.
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Figure 2. An expansion operation for SDAP. Designs are
encoded as colors within each node. The nodes being
expanded are circled in red. The expansion towards node s1

fails for all 3 designs, The expansion to s2 succeeds, and the
expansion to s3 succeeds for 2 of the 3 designs.

A given design d can appear in multiple nodes in Neighbors.
For each design d, the node in Neighbors closest to qrand is
identified. The temperature T (d) is adjusted based on the
success or failure of the extension operation from this node
for design d.

The pseudocode for the transition test function is shown
in Algorithm 2. The Neighbors set is processed in ascending
order of the distance of each node from qrand (line 6 of
Algorithm 1). For the node being expanded (snear), each
design d has its cost evaluated (line 4). Transitions to lower
cost nodes are always accepted (line 8). Transitions to
higher cost nodes are subjected to probabilistic acceptance
(line 10). The set V (lines 12 and 18) tracks designs which
have had their temperature adjusted during this iteration.
The function returns the set D of designs that pass the
transition test.

3.3 Theoretical Analysis
In this section we provide some theoretical analysis of
the SDAP algorithm’s completeness and path optimality.
A theoretical analysis of the complexity of SDAP with
respect to the brute-force approach is difficult, since both
are stochastic processes. In this work, we instead provide
empirical results in Section 4 that clearly show SDAP’s
efficiency versus an exhaustive search of paths for all
possible designs.

3.3.1 Probabilistic Completeness: SDAP’s probabilistic
completeness directly derives from that of RRT (LaValle
and Kuffner 2001), which is inherited by T-RRT under
the condition to guarantee a strictly positive probability
of passing the transition test as explained in (Jaillet
et al. 2010). Since SDAP maintains this property by
incorporating temperatures in the transition test for each
given design d ∈ D, it also ensures the positive transition
probability and that each Cdfree will be completely sampled,

Algorithm 2: TransitionTest(T , snear, qnew, c)
input : the input tree T ; vector of temperatures T;

parent node snear; new node qnew; the cost function c;
temperature adjustment rate Trate; Boltzmann constant K

internal: set of designs V with adjusted temperatures
output : vector of designs D that pass the transition test

1 S← φ
2 for d ∈ Designs(snear) do
3 if CollisionTest(qnew, d) == False then
4 cnear = c(Config(snear), d); cnew = c(qnew, d)
5 success← false
6 ∆c = cnew - cnear

7 if ∆c < 0 then
8 success← true

9 else
10 if exp(−∆c / (K · T (d))) > UniformRand())

then
11 success← true

12 if d /∈ V then
13 if success then
14 T (d)← T (d) / 2(∆c / energyRange(T ,d))

15 else
16 T (d)← T (d) · 2Trate

17 if success then D ← D ∪ d
18 V← V ∪ d

19 return (D)

thus maintaining the probabilistic completeness of the
algorithm.

3.3.2 Path Optimality: The current SDAP implementa-
tion is based on T-RRT, which has been empirically shown
to compute paths that tend to minimize cost with respect
to the MW criterion (Jaillet et al. 2010), but without
theoretical guarantee of optimality. Using anytime variants
of T-RRT (AT-RRT or T-RRT∗) (Devaurs et al. 2016) would
provide an asymptotic convergence guarantee. Implement-
ing these within SDAP remains as future work.

4 Empirical Analysis and Results
As a proof of concept, we apply SDAP to a set of academic
problems. SDAP is implemented as an adaptation of the
Multi-T-RRT algorithm (Devaurs et al. 2014), with two
trees growing from the initial and goal configurations. The
search stops when the algorithm is able to join the two
trees. For each problem, SDAP is compared against a naı̈ve
approach consisting of multiple independent runs of Multi-
T-RRT on each design d ∈ D.

4.1 Test System Description
The test system is a 2D articulated mechanism with a
fixed geometry surrounded with fixed obstacles. The bodies
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A1..An are circles with radius R. The first body A1 is a
fixed base. The other bodies A2..An are articulated by a
rotational joint centered on the previous rigid body that can
move in the interval [0, 2π). A configuration q is described
by a vector of n− 1 angles corresponding to the value
of each rotational joint. The features f1..fn assigned to
each body are electrostatic charges in F = {−1, 0, 1} (i.e.
m = 3). The design vector d contains n charges f1..fn
associated to each rigid body A1..An of the mechanism. In
the following, d will be written as a string, with each charge
{−1, 0, 1} corresponding to N, U, and P respectively. For
example, the design NPUN corresponds to the vector d =
[−1, 1, 0,−1]. ObstaclesO1..Ok are circles of radiusR and
have electrostatic charges with predefined values gi ∈ F .

The cost function is inspired by a simple expression of
the potential energy of a molecular system. It contains two
terms, one corresponding to the Lennard-Jones potential
and the other to the electrostatic potential. It is defined as:

c(q, d) = LJ(q, d) + ES(q, d) (3)

with:

LJ(q, d) =

|A|−2∑
i=1

 |A|∑
j=i+2

(
2 ·R
‖AiAj‖

)12

−
(

2 ·R
‖AiAj‖

)6


+

|A|∑
i=1

 |O|∑
j=1

(
2 ·R
‖AiOj‖

)12

−
(

2 ·R
‖AiOj‖

)6
 (4)

ES(q, d) =

|A|−2∑
i=1

 |A|∑
j=i+2

(
fi · fj
‖AiAj‖

)+

|A|∑
i=1

 |O|∑
j=1

(
fi · gj
‖AiOj‖

) (5)

where ‖XiXj‖ represents the Euclidean distance between
the centers of the bodies/obstacles Xi and Xj .

SDAP is empirically tested using several scenarios with
the objective to find the optimal path-design pair (P ∗, d∗).
First, a simple 4-body system is used to illustrate the effect
of the design choice and to discuss the optimality of the
solution. Then, two more complex systems, one involving
a variable number of bodies to be designed and the other
involving a variable number of degrees of freedom (DOF),
are used to analyze the effect of the complexity of the
problem on the performance of the algorithm.

4.1.1 4-Body System: The first system consists of four
bodies and five obstacles as shown in Figure 3 (top).
qinit and qgoal correspond to fully stretched configurations,
to the left and to the right, represented with solid and
dashed outlines respectively. The design space consists
of 34 = 81 possible combinations and the configuration
space is 3 dimensional. Owing to the position of the
positively and negatively charged obstacles, this scenario
favors designs involving negative charges. However, the

Figure 3. A 4-body (top), 10-body (middle) and 30-body
(bottom) scenarios. Obstacles with positive charges (labeled
P) are shown in solid red, negative (labeled N) in solid blue,
neutral in gray (unlabeled). The initial state is shown in green
with a solid line, a transition state shown in blue, and the goal
state is shown in red with a dashed line.

Prepared using sagej.cls



Molloy et al. 7

0 1 2 3 4 5 6
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0 1 2 3 4 5 6
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Figure 4. Configuration-space costmap of the 4-body system projected onto the first two DOF of the system expressed in
radians. The initial configuration is indicated by the red dot on the left, and the goal by the green dot on the right. The plot on the
left is for the UUUP design, the one to the right for UUUN. Each cell’s cost is computed by finding the value of the third angle that
minimizes the cost.

uncharged obstacles at the top and bottom of the workspace
create a narrow passage that enforces the articulated chain
to fold up, which penalizes designs with negative charges
everywhere, owing to their repulsion. Therefore, this is a
non-trivial design problem.

4.1.2 10-Body System: A larger system with 10 bodies
and six obstacles is shown in Figure 3 (middle). The design
space D contains 310 = 59049 possibilities, which cannot
be exhaustively explored within a reasonable computing
time, and is also challenging for SDAP because of memory
issues (further discussed below). For that reason, three
simplified versions of this scenario are constructed. The first
one fixes the design for the first seven bodies A1..A7 as
UUUUUUU. The remaining bodies (A8, A9, and A10) can
be designed, resulting in a design space of 33 = 27 designs.
The second version expands the design space to the last 4
bodies (A7..A10) , resulting in a design space of 34 = 81
designs. The last case expands the design space to the last 5
bodies (A6..A10), resulting in a design space of 35 = 243.
In all cases, the configuration space is 9 dimensional. All
versions of the 10-body system are constrained with the
same obstacles. They were chosen so that designs with
strongly positively or negatively charged end-effectors will
be trapped at local minima resulting from attractive or
repulsive forces generated by the bottom obstacles.

4.1.3 30-Body System: A third scenario, presented in
Figure 3 (bottom), involves a mobile system with up to 30
bodies. This example is used to analyze the influence of the
dimension of the configuration space on the performance of
SDAP. For this, a variable number of articulated joints is
considered. More precisely, rotational joints are considered
for all the bodies, or only for one every 2, 3 and 6 bodies.
Thus, the dimension of C is 30, 15, 10 and 5, respectively.
As for the 10-body system, the design of the first bodies in
the chain is fixed to U. Only the last 4 bodies (A27..A30)
are designed.

4.2 Benchmark Results
We compare SDAP to a naı̈ve approach (solving individual
problems for each design d ∈ D) using the same Multi-
T-RRT implementation. In other words, we compare one
run of the SDAP algorithm against |D| runs of a single-
design path search. Multiple runs are performed (100 for
the 4-body scenario, 50 for the 10-body scenario with
3 designed bodies, 20 for the 10-body scenario with 4
and 5 designed bodies, and 10 for the variants of the
30-body scenario) to reduce statistical variance inherent
with stochastic methods. The single-design explorations
can spend time trying to escape local minima associated
with the costmaps of unfavorable designs, causing very
long execution times and high-cost paths. As we are not
interested in finding a solution path for every possible
design but only for the designs with low-cost paths, a
timeout is enforced for the single-design explorations of 5
minutes for the 4-body scenario, and 15 minutes for the 10-
body scenarios. For the 30-body problem, the differences
in the dimensionality of the configuration space mandated
different timeouts of 15, 30, 30, and 35 minutes for the 5,
10, 15, and 30 DOF scenarios respectively. No timeout was
considered for SDAP (i.e. the algorithm always provided
a solution). In all the cases, the T-RRT parameter Trate
was set to 0.1, being the initial temperature T = 1 and the
Boltzmann constant K = 0.00198721 (note that T and K
do not have much physical meaning in the present context).
During the exploration, the maximal values reached by T
were around 100, being slightly lower for SDAP compared
to the naı̈ve approach. All the runs were performed in a
single threaded process on a Intel(R) Xeon(R) CPU E5-
2650 @ 2.00GHz processor with 32GB of memory.

4.2.1 Results for the 4-Body Scenario: We did a simple
experiment aiming to show how strongly the choice of
the design may affect configuration-space costmap. Figure
4 shows a projection of the configuration-space costmap
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Figure 5. Cost of the paths for the best designs found with the
naı̈ve approach (dotted blue and dashed green lines) and
SDAP (red line) for the 4-body scenario. SDAP solutions are
shown only for discovered paths (does not exhaustively
search). SDAP discovers the same low-cost designs as the
exhaustive single-design searches.

for two designs along with a solution path. One design
has a negatively charged end-effector (UUUN) and one
has a positively charged end-effector (UUUP). Angles 1
and 2 are projected onto the x and y axis respectively,
with angle 3 being set to minimize the cost function. For
the UUUN design, the costmap is highly favorable to the
desired motion, starting at a high-cost area and proceeding
downhill to a low cost area. The costmap associated with
the UUUP design shows a non-favorable motion between
the two states.

Figure 5 presents results concerning the optimal design
obtained by the naı̈ve approach and by SDAP. Both
algorithms provide very similar results (see the enlarged
region in the figure). The best designs mainly involve
negative and uncharged bodies, the best one being UNNU.
As expected, owing to repulsive forces between the
bodies of the mobile system, designs involving more than
two nonconsecutive negative bodies are worst than those
containing only one or two negative charges. In terms of
computational performance, the naı̈ve approach required

2± 0.1 minutes to compute the paths for the 81 designs
individually, whereas SDAP required 1± 0.6 minutes. This
represents a speed-up of 2 in favor of SDAP. As shown for
the more complex examples below, the performance gain
significantly increases when the dimensions of the design
space and the configuration space increase. Regarding the
number of nodes in the T-RRT trees, the 81 runs for
the single-design searches generated approximately 77,000
nodes in total (i.e. around 1,000 nodes per design on
average). SDAP generated approximately 39,000 nodes
for the simultaneous exploration of all the designs, which
is directly reflected with the increase in computational
efficiency. Note that the high density of nodes created by
the SDAP algorithm could be well exploited to improve
the path cost by incrementally adding cycles in an any-
time fashion, as proposed by Devaurs et al. (2016). Such an
extension of the algorithm, which remains for future work
(see Section 6), would guarantee asymptotic convergence to
the global optimum.

4.2.2 Influence of the cardinality of the design space:
We used the 3 variants of the 10-body scenario to analyze
the influence of the cardinality of the design space on
the performance of the SDAP algorithm. Results are
summarized in Table 1 and Figure 6. The speedup reported
in the right column of the table clearly show that the
difference in computing time between SDAP and the naı̈ve
approach increases significantly compared to the 4-body
scenario. In the 3-designed-body problem, SDAP is 26
times faster than the single-design search on average. In
the 4 and 5-designed-body cases, SDAP is 47 and 61 times
faster respectively. While the cardinality of design space D
is multiplied by 3 between each of the versions, the average
execution time of SDAP only grows by a factor of 2.5 and
2.2 respectively. SDAP achieves this result by limiting the
growth of the T-RRT search tree with respect to the size
of D. The numbers in Table 1 show that the naı̈ve approach
yields a search tree scaling closely with the size ofD, which
directly correlates with higher computational requirements.

|D| |D| Design
GF

Naı̈ve SDAP SDAP
SpeedupNodes Node Time Time Nodes Node Time Time

(x 103) GF (min) GF (x 103) GF (min) GF
3 27 – 359 ± 34 – 147 ± 24 – 79 ± 30 – 6 ± 4 – 24.5
4 81 3 1,204 ± 63 3.4 658 ± 62 4.5 205 ± 52 2.6 14 ± 8 2.3 47.0
5 243 9 3,798 ± 119 10.5 2,157 ± 112 14.7 432 ± 103 5.5 35 ± 12 5.8 61.6

Table 1. For each variant of the 10-body scenario, the table shows number of design bodies (D), and the size of the design
space (D) for experiments allowing 3, 4, and 5 design positions. The average size of the search tree (expressed in thousands)
and the wall clock execution time (minutes) are shown along with their standard deviations. The design space growth factor (GF)
is shown along with the GF for each average tree sizes and run times (growth from the 3 design position problem). The tree size
for the naı̈ve approach follows the growth in the design space, where the SDAP tree grows at a much slower rate. The final
column shows the speed up factor between the naı̈ve approach and SDAP.
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Figure 6. Evolution of the computing time (in logarithmic
scale) with respect of the cardinality of the design space for
the naı̈ve approach and for SDAP.

Importantly, as in the case of the 4-body problem, SDAP
successfully identifies the designs yielding the best path
costs. Figure 7 compares the solutions found by SDAP to
those obtained by the naı̈ve approach.

Note that our initial implementation of SDAP employs a
brute force nearest neighbor search with O(n) complexity.
The number of average nodes shown in Table 1 for the
naı̈ve approach represents the total of a single set of runs to
cover each design inD. However, each individual execution
produces a search tree containing 16,000 nodes on average
for the 5-designed-body problem. The SDAP search tree for
the same problem contains 432,000 nodes on average. Thus,
a more efficient nearest neighbor search method would
certainly further improve SDAP’s relative performance.

The memory requirement for SDAP is directly correlated
to the size of the search tree. Each node in the search
tree takes on average 37 kB of memory for the 10-
body scenarios. For the 5-designed-body problem, SDAP
required approximately 16 GB of memory (this also
involves base data structures used for fast collision
detection and distance computation, in addition to the
system representation). Extrapolating from the data in
Table 1, each additional body in the design space doubles
the size of the search tree, and thus, doubles the memory
requirements. We further discuss this in Section 6, and
suggest some ideas to circumvent this issue.

4.2.3 Influence of the dimension of the configuration
space: The 4 variants of the 30-body scenario, involving
a variable number of DOF, were used to analyze the
influence of the dimensionality of the configuration space
on the performance of the SDAP algorithm. Results are
summarized in Table 2. The numbers in this table (see
also Figure 8) show that performance gain of SDAP
with respect to the naı̈ve approach increases with the
complexity of the problem. The improvement is very
significant at the beginning, when changing from 5 DOF to
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Figure 7. Cost of the paths for the best designs found with the
naı̈ve approach (dotted blue and dashed green lines) and
SDAP (red line) for the three variants of the 10-body problem:
3-designed-body problem (top), 4-designed-body problem
(middle), 5-designed-body problem (bottom). SDAP solutions
shown only for discovered paths (does not exhaustively
search). SDAP discovers the same low-cost designs as the
exhaustive single-design searches.

10 DOF, and tends to decrease for larger dimensions. Note
however that the speedups reported in higher dimensions
are underestimated due to use of a timeout for the single-
design runs of the naı̈ve approach. As with the previous
experiments, the best designs obtained by SDAP remain
very similar to those obtained with the naı̈ve approach.

As illustrated in Figure 9, which summarizes results
about the influence of the problem complexity on the SDAP
performance versus the naı̈ve approach, the speedup tends
to increase with both the cardinality of the design space and
the dimension of the configuration space. It is important to
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|DOF | |DOF |
GF

Naı̈ve SDAP SDAP
SpeedupNodes Node Time Time Nodes Node Time Time

(x 103) GF (min) GF (x 103) GF (min) GF
5 – 449 ± 50 – 104 ± 23 – 80 ± 18 – 4 ± 1 – 26

10 2 996 ± 84 2.2 527 ± 58 5.0 98 ± 19 1.2 5 ± 1 1.2 105
15 3 1,152 ± 146 2.6 614 ± 100 5.9 113 ± 18 1.4 5 ± 1 1.2 123
30 6 1,912 ± 99 4.3 1,511 ± 100 14.5 169 ± 68 2.1 11 ± 8 2.8 137

Table 2. For the 30-Body scenario, the table shows results for different dimensions of the configuration-space, involving systems
with 5, 10, 15 and 30 DOF. The average size of the search tree (expressed in thousands) and the wall clock execution time
(minutes) are shown along with their standard deviations. The configuration space growth factor (GF) is shown along with the GF
for each average tree sizes and run times (growth from the 5 DOF problem). The run times for SDAP grow at a slower rate than
for the naı̈ve approach, as shown in the speed up factors of the last column.
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Figure 8. Evolution of the computing time (in logarithmic
scale) with respect of the dimension of the configuration space
for the naı̈ve approach and for SDAP.
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Figure 9. The relative performance of SDAP over the naı̈ve
approach. The green line shows this with respect to the size of
design space using the 10-body problem as benchmark. The
blue line showcases the performance varying the number of
DOF using the 30-body scenario.

mention that, for the 10-body problem, on average the naı̈ve
approach reached the timeout 15%, 23%, 30% of the time
for the 3, 4, and 5-designed body problems respectively. For
the 30-body problem, the timeout was reached 1%, 31%,

36% and 53% of the time for the 5, 10, 15, and 30 DOF
experiments. This large number of failures when computing
paths with the naı̈ve approach means that many runs would
have needed a longer time to eventually find a solution.
Thus, larger timeout values would have certainly led to an
even more impressive speedup in favor of SDAP.

5 A First Application to Protein Motion
Design

Results presented in the previous section show the good
performance of SDAP to solve relatively simple problems.
This section deals with a more difficult problem related
to protein motion design. First, the problem is formulated
as a simultaneous design and path planning problem.
Some simplifications are required in order to enable the
application of the current version of the SDAP algorithm. A
first application in this context is attempted for the design
of protein region (a loop) aiming to facilitate its transition
between two stable states.

5.1 Problem Definition
The protein motion design problem can be formulated as
follows: given two protein scaffold conformations∗ q1 and
q2, find a sequence of n amino acids with (meta-)stable
states for both structures, and favoring the conformational
change (i.e. the motion) between them. Although existing
protein design methods may identify sequences for which
the two given conformations (q1 and q2) correspond to
(meta-)stable states, these methods do not consider the
feasibility of the transition path between these two states.
In order to design a candidate protein for this motion, it is
necessary to find a tuple (path between q1 and q2, sequence

∗In this paper, the term conformation is used to define a spatial
arrangement of the atoms of the molecule. It is the equivalent to the term
configuration for a robot.

Prepared using sagej.cls



Molloy et al. 11

of amino acids) that minimizes energy variation (i.e. the
mechanical work) along the transition path.

For this preliminary application of the SDAP algorithm
to protein motion design, we consider the coarse-grained
model proposed by Brown et al. (2003) (usually called
BLN model) to limit the combinatorial complexity of the
design space. More precisely, the 20 natural amino acids
are grouped into 3 classes according to their chemical
properties: B for the hydrophobic, L for the hydrophilic, and
N for the neutral (see Table 3). This simplification reduces
the cardinality of the design space to 3n possible designs
(instead of 20n). Furthermore, each amino acid (i.e. each
body A1, . . . , An) is modeled as a single bead centered
on its Cα atom. Consecutive beads are linked by virtual
bonds. This simplification allows us to neglect additional
degrees of freedom associated with the protein side-chains.
The configuration cost function corresponds to the potential
energy, defined as:

c(q, d) =
∑
θ

1

2
kθ(θ − θ0)2

+
∑
φ

[
A(1 + cosφ) +B(1− cosφ)

+ C (1 + cos 3φ) +D
(
1 + cos

[
φ+

π

4

]) ]
+

∑
i,j≥i+3

4S1

[(
σ

rij

)12

− S2

(
σ

rij

)6
]

(6)

In this unitless equation, the first term is a bond angle
energy term, where θ is the angle formed by two
consecutive virtual bonds, kθ is a force constant of
20 rad−2, and θ0 is a reference angle of 105◦. The second
term is a dihedral angle energy term, where φ is the dihedral
angle formed by three consecutive virtual bonds, σ is the
distance unit (σ = 1Å), and A, B, C, D are parameters
varying as a function of the local secondary structure
(computed using DSSP (Kabsch and Sander 1983; Touw
et al. 2015)):

• A = 0, B = C = D = 1.2 for an helical structure,
• A = 0.9, B = D = 0, C = 1.2 for a strand,
• and A = B = D = 0, C = 0.2 for other structures.

The last term considers pair-wise non bonded interactions,
where rij is the distance between the ith and the jth Cα
atoms in the sequence, and S1 and S2 are parameters that
depend on the designed features associated to the pair of
amino acid residues: S1 = S2 = 1 for B-B interactions,
S1 = 1

3 and S2 = −1 for L-L and L-B interactions, and
S1 = 1 and S2 = 0 for N-L, N-B, and N-N interactions.

20 3 20 3 20 3 20 3
Ala B Met B Gly N Asn L
Cys B Val B Ser N His L
Leu B Trp B Thr L Gln L
Ile B Tyr B Glu L Lys L
Phe B Pro N Asp L Arg L

Table 3. Correspondence of the 20 natural amino acids
(columns 20) with the 3 coarse-grained design features
(columns 3).

Figure 10. Representation of the closed (left) and occluded
(left) conformations of the Met20 loop in ecDHFR protein.

5.2 Experiments
5.2.1 Test System: For this preliminary work, we
have investigated Escherichia coli dihydrofolate reductase
(ecDHFR). Prior work showed that the loop formed by
residues 9–24 (called the Met20 loop) fluctuates between
two conformations (called closed and occluded in related
work) at a rate comparable with the speed of the reaction
catalyzed by this enzyme (Falzone et al. 1994), indicating
that this flexible loop is implicated in this reaction. Other
studies also demonstrated that the replacement of central
residues of the Met20 loop (Met16, Glu17, Asn18, and
Ala19) by glycine residues results in a striking decrease in
the enzyme activity (Li et al. 1992; Osborne et al. 2001).
Our aim is to study the effect of these mutations on the
protein loop motion using SDAP.

5.2.2 Experiment Setup: Structures of ecDHFR corre-
sponding to the closed and occluded conformational states
of the Met20 loop have been solved experimentally and
are available in the Protein Data Bank with IDs 1RX2 and
1RX4, respectively. These two structures, which are the
starting point for our studies, are illustrated in Figure 10.
A comparison of these two structures shows that only
the Met20 loop moves significantly, while the rest of the
protein backbone is very rigid. Therefore, to reduce the
dimension of the configuration space to be explored, all the
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protein amino acid residues excepting those of the Met20
loop (residues 9–24) are considered as rigid bodies and
are fixed in the space. This simplified model involves 32
DOFs. To keep the two ends of the loop connected to
the rest of the protein, kinematic loop closure constraints
need to be satisfied during the exploration performed by
SDAP. For this, we have applied the approach proposed
by Cortés and Siméon (2005) to extend sampling-based
planners to closed-chain mechanisms. This approach, based
on a decomposition of the degrees of freedom together
with the combination of geometrically-constrained random
sampling and inverse kinematics, was successfully applied
to protein loops in previous work (Cortés et al. 2004).

Concerning the design space, only the four central
residues (16–19) are associated to variable design features.
The other residues are each constrained to keep the design
feature B, L, or N, corresponding to its original amino acid
type. This reduces the design space to a size of 34 = 81
possible designs. SDAP was applied to find paths from the
occluded conformation to the closed one, considering an
initial temperature of 300 K, and a maximum variation of
bond rotations of 0.015 radians at each step.

5.2.3 Results: For this difficult problem, SDAP was
able to find paths connecting the closed and occluded
conformations of the Met20 loop. The algorithm required
about 45 minutes of CPU time, and generated around
50,000 nodes. However, it failed to identify the best
designs for this motion. Indeed, all the nodes in the
solution path were accepted by SDAP for all the designs.
Moreover, 93% of the nodes generated by the algorithm
were labeled as valid for the 81 possible designs. A
more accurate analysis of the energy along the solution
path revealed that the design-dependent component of
the energy is negligible (about 5 orders of magnitude
smaller) compared with the total energy variation induced
by the loop motion. These results clearly indicate that
the chosen coarse-grained energy function is not well
adapted to protein motion design. A more detailed energy
function, able to differentiate the quality of the sequences
for a conformational transition, is required. However, using
more accurate (all-atom) energy function is not possible in
practice with the current implementation of SDAP, which
does not scale to a sequence space of size 20n, mainly due
to memory issues. As mentioned below, the implementation
of an enhanced version of SDAP able to deal with such a
complex problem remains a challenging objective for future
work.

6 Conclusion
In this paper, we have presented an original formulation
of a challenging problem combining system design and
path planning, and have proposed a new approach to

solve it, building on sampling-based algorithms. Our first
implementation of SDAP already shows significant gains
in efficiency and accuracy compared with a brute-force
approach.

While our work was primarily motivated by protein
motion design problems, several applications in robotics
can also be envisioned. In addition to the design of some
robot’s features to optimize its motion in a given workspace,
it would also be possible to apply the proposed method
to optimize the workspace layout for a given robot. One
can also imagine applications for helping to the design of
modular self-reconfigurable robots. We aim to implement
SDAP within robot motion planning software to investigate
these potential applications further.

For future work, in addition to investigating a variant of
SDAP with asymptotic optimality guarantees based on the
any-time T-RRT algorithm (AT-RRT) (Devaurs et al. 2016),
we also aim to introduce further improvements. First,
the exploration of very-high-dimensional configuration
and design spaces implies computer memory issues (the
resulting trees or graphs are very large). A solution to
this problem would be to introduce pruning stages during
the exploration, as is done in the SST* algorithm (Li
et al. 2016). Larger design spaces also require SDAP
to employ more sophisticated filters and heuristics. A
promising direction is to perform statistical learning of
the structure of the space, aiming to explore it more
efficiently and to control the size of the search tree. To
tackle the extreme combinatorial complexity of real-size
problems in protein design, the algorithmic improvements
described here clearly need to be combined with efficient
parallelization strategies of the SDAP algorithm, similar to
those proposed for T-RRT (Estaña et al. n.d.) for running on
(possibly large) computer clusters.
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