RF MEMS continuous reversible variable inductor based on a microfluidic network
Abstract
In this work, RF MEMS continuous reversible variable inductor has been fabricated by using microelec-tronic technology and lamination process. We review, evaluate and compare this variable inductor with other work. The proposed inductor is a dual circular coil and has an inductance of few nH. The fundamental idea is to place a liquid droplet between the metal turns of a coil in order to modify the capacitive/resistive coupling between metal tracks and hence to change the stored magnetic energy. The SU-8 resin was used to realize the microfluidic channels and Au as metallic tracks. To prove the reversibility of the inductor, two cases were studied: filling and emptying of channels. The tuning range of the inductance is approximately 107 % at 1.6 GHz, making these devices very suitable as building blocks in many RF applications.
Fichier principal
RF MEMS continuous reversible variable inductor based on microfluidic network.pdf (762.96 Ko)
Télécharger le fichier
Origin : Files produced by the author(s)
Loading...