S. Interconnections and .. , , p.44

.. Matching, , p.44

.. System-simulation, , p.47

C. , , p.47

D. , , p.50

C. Design and .. ,

L. New-architecture-of, , p.53

L. New and R. ,

S. , , p.58

R. , 4.2.1 New system simulation, p.58

C. , , p.58

D. , , p.59

, capacitor, which needs 3337s to be fully charged In the case of 15mA current the system requires 101s to charge, while the fixed capacitor needs 147s

, Figure 41. The charging of the system for 700?? current compared with a fixed 400mF capacitor

, Figure 42. The charging of the system for 15m? current compared with a fixed 400mF capacitor

, In figure 43 is presented the worst speed condition analysis for charging current 700??. Here the system needs 104s to charge and still manages to alter the configurations properly

, Figure 47.The discharging of the system for 50m? current compared with a fixed 400mF capacitor

, In worst one condition analysis the system operates properly and needs 16290s to discharge for 2?? current, as it is indicated in figure 48

, Figure 48.Worst one condition analysis for discharging current 2??

, Finally, for discharging current of 50mA the system needs 28s in worst one condition (figure 49

, References

R. Monthéard, M. Bafleur, V. Boitier, and J. Dilhac, Self-adaptive switched ultra-capacitors: a new concept for efficient energy harvesting and storage, PowerMEMS, p.2012

F. Mahboubi, M. Bafleur, V. Boitier, A. Alvarez, J. Colomer et al., Self-Powered Adaptive Switched Architecture Storage, PowerMEMS, p.2016
DOI : 10.1088/1742-6596/773/1/012103

URL : https://hal.archives-ouvertes.fr/hal-01497546

M. G. Reveles-miranda, M. I. Flota-bañuelos, F. Chan-puc, and D. Pacheco-catalán, Experimental Evaluation of a Switching Matrix Applied in a Bank of Supercapacitors, Energies, vol.5, issue.12, pp.1-12, 2017.
DOI : 10.1109/ICSET.2008.4747099

W. S. Wang, Energy harvesting system design and optimization for wireless sensor, 2014.

C. Peters, D. Spreemann, M. Ortman, and Y. Manoli, A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications, Journal of Micromechanics and Microengineering, vol.18, issue.10, pp.960-1317, 2008.
DOI : 10.1088/0960-1317/18/10/104005

M. Maadi, A Linear CMOS Low Drop-Out Voltage Regulator in a 0.6??m CMOS Technology, International Journal of Electronics and Electrical Engineering, vol.3, issue.3, pp.191-196, 2015.
DOI : 10.12720/ijeee.3.3.191-196

R. J. Milliken, J. Silva-martínez, and E. Sánchez-sinencio, Full On-Chip CMOS Low-Dropout Voltage Regulator, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.54, issue.9, pp.1879-1890, 2007.
DOI : 10.1109/TCSI.2007.902615

W. Li, R. Yao, and L. Guo, A Low Power CMOS Bandgap Voltage Reference with Enhanced Power Supply Rejection, IEEE 8th Int. Conf. on ASIC, ASICON '09, 2009.

M. F. Barros, J. M. Guilherme, and N. C. Horta, State-of-the-Art on Analog Design Automation, pp.19-47, 2010.
DOI : 10.1007/978-3-642-12346-7_2

A. Siskos, F. Mahboubi, V. Boitier, T. Laopoulos, and M. Bafleur, A power management system using reconfigurable storage scheme for batterylesss wireless sensor nodes, International Conference on Modern Circuits and Systems Technologies, 2018.

I. Pappas, V. Kalenteridis, S. Siskos, and S. Vlassis, A complete over-current/short-circuit protection system for Low-Drop Out regulators, IEEE/IFIP 20th International Conference on VLSI and Systemon-Chip (VLSI-SoC) 2012, p.2012