D. Antunes and W. P. Heemels, Linear Quadratic Regulation of Switched Systems Using Informed Policies, IEEE Transactions on Automatic Control, vol.62, issue.6, pp.2675-2688, 2017.
DOI : 10.1109/TAC.2016.2616388

D. P. Bertsekas, Infinite time reachability of state-space regions by using feedback control, IEEE Transactions on Automatic Control, vol.17, issue.5, pp.604-613, 1972.
DOI : 10.1109/TAC.1972.1100085

F. Blanchini, Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions, IEEE Transactions on Automatic Control, vol.39, issue.2, pp.428-433, 1994.
DOI : 10.1109/9.272351

F. Blanchini, Nonquadratic Lyapunov functions for robust control, Automatica, vol.31, issue.3, pp.451-461, 1995.
DOI : 10.1016/0005-1098(94)00133-4

F. Blanchini and S. Miani, Set-Theoretic Methods in Control, Birkhäuser, 2008.
DOI : 10.1007/978-3-319-17933-9

F. Blanchini and C. Savorgnan, Stabilizability of switched linear systems does not imply the existence of convex Lyapunov functions, Automatica, vol.44, issue.4, pp.1166-1170, 2008.
DOI : 10.1016/j.automatica.2007.08.012

J. Bochnak, M. Coste, and M. Roy, Real algebraic geometry, 1998.
DOI : 10.1007/978-3-662-03718-8

U. Boscain, Stability of Planar Switched Systems: The Linear Single Input Case, SIAM Journal on Control and Optimization, vol.41, issue.1, pp.89-112, 2002.
DOI : 10.1137/S0363012900382837

S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in system and control theory. SIAM, 1994.

S. Boyd and L. Vandenberghe, Convex Optimization, 2004.

J. Daafouz, P. Riedinger, and C. Iung, Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach, IEEE Transactions on Automatic Control, vol.47, issue.11, pp.1883-1887, 2002.
DOI : 10.1109/TAC.2002.804474

G. S. Deaecto, J. C. Geromel, and J. Daafouz, Dynamic output feedback H ? control of switched linear systems, Automatica, issue.8, pp.471713-1720, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00594997

M. Fiacchini and M. Jungers, Necessary and sufficient condition for stabilizability of discrete-time linear switched systems: A set-theory approach, Automatica, vol.50, issue.1, pp.75-83, 2014.
DOI : 10.1016/j.automatica.2013.09.038

URL : https://hal.archives-ouvertes.fr/hal-00921268

M. Fiacchini, A. Girard, and M. Jungers, On the Stabilizability of Discrete-Time Switched Linear Systems: Novel Conditions and Comparisons, IEEE Transactions on Automatic Control, vol.61, issue.5, pp.611181-1193, 2016.
DOI : 10.1109/TAC.2015.2450871

URL : https://hal.archives-ouvertes.fr/hal-01185649

M. Fiacchini and M. Tarbouriech, Control co-design for discrete-time switched linear systems, Automatica, vol.82, pp.181-186, 2017.
DOI : 10.1016/j.automatica.2017.04.043

URL : https://hal.archives-ouvertes.fr/hal-01638569

J. C. Geromel and P. Colaneri, Stability and Stabilization of Continuous???Time Switched Linear Systems, SIAM Journal on Control and Optimization, vol.45, issue.5, pp.1915-1930, 2006.
DOI : 10.1137/050646366

J. C. Geromel and P. Colaneri, Stability and stabilization of discrete time switched systems, International Journal of Control, vol.280, issue.7, pp.719-728, 2006.
DOI : 10.1109/9.664149

R. M. Jungers, The Joint Spectral Radius: Theory and Applications, 2009.
DOI : 10.1007/978-3-540-95980-9

I. Kolmanovsky and E. G. Gilbert, Theory and computation of disturbance invariant sets for discrete-time linear systems, Mathematical Problems in Engineering, vol.4, issue.4, pp.317-367, 1998.
DOI : 10.1155/S1024123X98000866

URL : http://doi.org/10.1155/s1024123x98000866

A. Kruszewski, R. Bourdais, and W. Perruquetti, Converging algorithm for a class of BMI applied on state-dependent stabilization of switched systems, Nonlinear Analysis: Hybrid Systems, vol.5, issue.4, pp.647-654, 2011.
DOI : 10.1016/j.nahs.2011.05.002

J. W. Lee and G. E. Dullerud, Uniformly Stabilizing Sets of Switching Sequences for Switched Linear Systems, IEEE Transactions on Automatic Control, vol.52, issue.5, pp.868-874, 2007.
DOI : 10.1109/TAC.2007.895924

D. Liberzon, Switching in Systems and Control, Birkhäuser, 2003.
DOI : 10.1007/978-1-4612-0017-8

D. Liberzon and A. S. Morse, Basic problems in stability and design of switched systems, IEEE Control Systems Magazine, vol.19, pp.59-70, 1999.

H. Lin and P. J. Antsaklis, Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results, IEEE Transactions on Automatic Control, vol.54, issue.2, pp.308-322, 2009.
DOI : 10.1109/TAC.2008.2012009

M. Margaliot, Stability analysis of switched systems using variational principles: An introduction, Automatica, vol.42, issue.12, pp.2059-2077, 2006.
DOI : 10.1016/j.automatica.2006.06.020

A. P. Molchanov and Y. S. Pyatnitskiy, Criteria of asymptotic stability of differential and difference inclusions encountered in control theory, Systems & Control Letters, vol.13, issue.1, pp.59-64, 1989.
DOI : 10.1016/0167-6911(89)90021-2

G. Pipeleers, B. Demeulenaere, J. Swevers, and L. Vandenberghe, Extended LMI characterizations for stability and performance of linear systems, Systems & Control Letters, vol.58, issue.7, pp.510-518, 2009.
DOI : 10.1016/j.sysconle.2009.03.001

C. Prieur, A. Girard, and E. Witrant, Stability of Switched Linear Hyperbolic Systems by Lyapunov Techniques, IEEE Transactions on Automatic Control, vol.59, issue.8, pp.2196-2202, 2014.
DOI : 10.1109/TAC.2013.2297191

URL : https://hal.archives-ouvertes.fr/hal-00845766

R. T. Rockafellar, Convex Analysis, 1970.
DOI : 10.1515/9781400873173

A. M. Rubinov and A. A. Yagubov, The space of star-shaped sets and its applications in nonsmooth optimization, Quasidifferential Calculus, pp.176-202, 1986.
DOI : 10.1007/BFb0121146

R. Schneider, Convex bodies: The Brunn-Minkowski theory, 1993.
DOI : 10.1017/CBO9780511526282

Z. Sun and S. S. Ge, Stability Theory of Switched Dynamical Systems, 2011.
DOI : 10.1007/978-0-85729-256-8

J. G. Vanantwerp and R. D. Braatz, A tutorial on linear and bilinear matrix inequalities, Journal of Process Control, vol.10, issue.4, pp.363-385, 2000.
DOI : 10.1016/S0959-1524(99)00056-6

M. A. Wicks, P. Peleties, and R. A. De-carlo, Construction of piecewise Lyapunov functions for stabilizing switched systems, Proceedings of 1994 33rd IEEE Conference on Decision and Control, pp.3492-3497, 1994.
DOI : 10.1109/CDC.1994.411687

W. Zhang, A. Abate, J. Hu, and M. P. Vitus, Exponential stabilization of discrete-time switched linear systems, Automatica, vol.45, issue.11, pp.452526-2536, 2009.
DOI : 10.1016/j.automatica.2009.07.018

W. Zhang, J. Hu, and A. Abate, Infinite-Horizon Switched LQR Problems in Discrete Time: A Suboptimal Algorithm With Performance Analysis, IEEE Transactions on Automatic Control, vol.57, issue.7, pp.1815-1821, 2012.
DOI : 10.1109/TAC.2011.2178649