Microsystems for the electrochemical and optical monitoring of bioenergetic activities of isolated mitochondria


To cite this version:
Gabriel Lemercier, C. Colin, Fadhila Sékli Belaïdi, V Vajrala, Xavier Dollat, et al.. Microsystems for the electrochemical and optical monitoring of bioenergetic activities of isolated mitochondria. BIOSENSORS 2018, Jun 2018, Miami, United States. 2018. <hal-01871388>

HAL Id: hal-01871388
https://hal.laas.fr/hal-01871388
Submitted on 25 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Microsystems for the electrochemical and optical monitoring of bioenergetic activities of isolated mitochondria

G. Lemercier1,2,4, C. Colin2,3, F. Sekli Belaïdi1, V.S. Vajrala2, X. Dollat1, P. Diolez3, J.E. Sarry4, J. Launay1, P. Temple-Boyer1 and S. Arbaïli2

Rational
Mitochondria are known as central players in many cellular processes including oxidative phosphorylation, oxidative stress and signaling through the production of reactive oxygen species (ROS), or the activation of apoptosis by the cytochrome c release. Consequently, they play a key role in the progression of diseases linked to ageing, including cancers and neurodegenerative troubles. The objective of this work is to develop solutions allowing the real time monitoring of bioenergetic activities of isolated mitochondria, at the single mitochondrion scale.

Key biomarkers of mitochondrial activity:
- O2 consumption
- ROS production (H2O2)
- Membrane potential (ΔΨm)

<table>
<thead>
<tr>
<th>Optical analysis</th>
<th>Electrochemical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis at the scale of single mitochondrion</td>
<td>Selectivity</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Kinetic and quantitative data</td>
</tr>
<tr>
<td>Diversity of probes</td>
<td>Number of detectable species</td>
</tr>
<tr>
<td></td>
<td>Hardly applicable to single mitochondrion analysis</td>
</tr>
</tbody>
</table>

Microwell arrays: design and manufacturing
Integrate ring nanoelectrode into microwell arrays is one solution to separate mitochondria one from each other and reach analysis at the single scale. Moreover, the geometrical structure of microwells provide the confinement of the emitted species, leading to the maximization of the collection ratio (τ). Built on glass substrates, the ElecWell device offers the coupling of two complementary techniques: electrochemistry and optics. Designed in order to ensure compatibility with a microscopic platform thermically regulated, the second generation of the ElecWell device provides a perfect coupling with microscopy and fluidics.

Analysis of isolated mitochondria activities
Activators and inhibitors of the electron transport chain are added in a becher under magnetic agitation. The fluid is constantly circulating within a closed circuit passing by the ElecWell microfluidic chamber thanks to a peristaltic pump. Fluorescence microscopy (ex: ΔΨm) and electrochemistry (ex: O2 consumption) can be performed simultaneously.

Next step: get reproducibility and progressively reduce the number of microwells forming the network, from 10^4 to 1.