Design, realization and characterization of all-arround SiO2/Al2O3gate, suspended silicon nanowire chemical field effect transistors

Ahmet Lale, Auriane Grappin, David Bourrier, Laurent Mazenq, Aurélie Lecestre, Jérôme Launay, Pierre Temple-Boyer

To cite this version:
Ahmet Lale, Auriane Grappin, David Bourrier, Laurent Mazenq, Aurélie Lecestre, et al.. Design, realization and characterization of all-arround SiO2/Al2O3gate, suspended silicon nanowire chemical field effect transistors. 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS 2017), Jun 2017, Kaohsiung, Taiwan. 4p., 10.1109/TRANSDUCERS.2017.7994346. hal-01871397

HAL Id: hal-01871397
https://hal.laas.fr/hal-01871397
Submitted on 10 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
DESIGN, REALIZATION AND CHARACTERIZATION OF ALL-AROUND SiO$_2$/Al$_2$O$_3$ GATE, SUSPENDED SILICON NANOWIRE CHEMICAL FIELD EFFECT TRANSISTORS

Ahmet LALE1, Auriane GRAPPIN1, David BOURRIER1, Laurent MAZENQ1, Aurélie LECESTRE1, Jérôme LAUNAY1 and Pierre TEMPLE-BOYER1

1LAAS-CNRS, Université de Toulouse, F-31400 Toulouse, France

ABSTRACT

We present a sensor platform associated to silicon-nanowire chemical field effect transistors (Si-nw-ChemFET). Innovations concern the use of networks of suspended silicon N$^+/P/N^+$ nanowires as conducting channel, the realization by thermal oxidation and Atomic-Layer Deposition (ALD) of a SiO$_2$/Al$_2$O$_3$ gate insulator all-around the silicon nanowires, and their final integration into covered SU8-based microfluidic channels. The Si-nw-MOSFET/ChemFET fabrication process and electrical/electrochemical characterizations are presented. The fabrication process did not need an expensive and time-consuming e-beam lithography, but only fast and “low cost” standard photolithography protocols. Such microdevice will provide new opportunities for biochemical analysis at the micro/nanoscale.

KEYWORDS

ChemFET, finFET, MOSFET, ISFET, silicon nanowire, biosensor, potentiometric sensor, nanosensor, microsensor, pH measurement, microfluidics, gate all-around.

INTRODUCTION

Chemically sensitive Field Effect Transistors (ChemFET) are microsensors derived by Metal Oxide Semiconductor Field Effect Transistors [1]. These are electronic microsensors designed to measure the pH. ChemFETs have shown interesting properties for the detection in liquid phase [1][2] and have been functionalized for many applications such as the measurement of potassium [3], sodium [3], ammonium [4], urea [5], creatinine [6], lactate [7], glutamate [8]...

Nevertheless, to open the door to new innovative applications for ChemFET-based microsensors, it is necessary to increase their sensitivity, to decrease response times and their detection limit. To meet this challenge, the development of nanotransistor based on silicon nanowire Si-nw-ChemFET was proposed [9][10]. In this field, surrounding gate seems the ideal candidate: indeed, low channel dimensions provide new detection mechanisms as well as analysis of micro/nano-volumes, allowing to work at the single cell level [10]. Nevertheless, the development of suspended silicon nanowires should still improve Si-nw-ChemFET detection properties in liquid phase, providing the integration of well-controlled chemically-sensitive gate insulators all-around the Si-nw-based conductive channel.

EXPERIMENTAL

Device fabrication

6-inch SOI wafers (Silicon On Insulator, P type, 1015 atoms/cm3) were used.

These devices consist in single and networked silicon nanowires field effect transistors. Different wire lengths, gate lengths and number of parallel wires were fabricated.

First, source and drain areas were N doped (1020 atoms/cm3) with arsenic ion implantation. Two different gate length were realized, 0.9µm and 3.9µm.

To fabricate silicon nanowires, projection photolithography with a Canon FPA-3000i4 stepper and an AZ ECI 3012 photoresist were employed. After optimizations, were achieved on a single chip, with the same insolation parameters, patterns of transistors with a single nanowire as channel, next to patterns of transistors with 100 nanowires parallel network (figure 1). The goal is to compare in the future, the pros and cons of each structure, in terms of limit of detection and/or sensitivity for biochemical applications.

Figure 1: SEM view of a network of photoresist nanowires, before reactive ion etching (tilt 52°).

Once photoresist nanowires were optimized, nanopatterns were transferred in silicon thanks to a reactive ion etching. After optimization, 200nm x 170nm rectangle section nanowires were obtained with a perfect reproducibility. Two different densities of network were realized: 20 and 100 nanowires over a width of 80µm. Thus, using SOI wafers, networks of suspended silicon nanowires were successfully integrated.

Then the realization of the gate structure was performed. After RCA cleaning, a dry thermal oxidation of 22nm was achieved and an alumina film of 26nm was deposited by ALD. The advantage of this technique is to deposit extremely conformal films all around the nanowires, while providing well-controlled thicknesses [11]. Thus, a SiO$_2$/Al$_2$O$_3$ gate was integrated all-around the...
silicon nanowire (figure 2). This Al$_2$O$_3$ layer was used as a gate chemically-sensitive layer as well as the microdevice passivation layer in liquid phase [9][12].

Once the gate/source/drain metallic contacts and interconnections were ended, Si-nw-MOSFET and Si-nw-ChemFET were fabricated (figure 3).

Then, using a specific SU8-3D technique [13], covered 5µm width microfluidic channels were finally realized in order to deal with liquid phase analysis at the microscale (figure 4).

Si-nw-MOSFET characterizations

The threshold voltage of 42 transistors was measured and the mean value was 0.62V with a standard deviation of only 0.26V (figure 6). That shows the quality of the SiO$_2$/ALD-Al$_2$O$_3$ gate dielectric and the Si/SiO$_2$ interface.

The influence of 2 parameters on electric characteristics was studied: the number of parallel nanowires (1, 20 and 100) and the gate length L$_G$ (0.9µm “short” and 3.9µm “long”), the length of the nanowires is 10µm.

Firstly, very low subthreshold (I$_{OFF}$) currents (7×10^{-14}A for $V_{GS} = -2$V, $V_{DS} = 0.1$V) were obtained for a parallel network of 100 nanowires (figure 7). This leakage current is the same for both gate lengths and proportional to the number of parallel nanowires. Therefore, it allows to estimate the leakage current of X nanowires.

DEVICE CHARACTERIZATIONS

Si-nw-MOSFET/ChemFET were characterized electrically and electrochemically using standard I-V experiments (figure 5). The MOSFET works without liquid, so it makes easier some characterizations. It allows to check the quality of the manufacturing process, and to discriminate problems due to the transistor from those related to the microfluidics.

Figure 2: SEM view of silicon nanowires after gate insulator completion (tilt 52°).

Figure 3: a) Schematic view and b) SEM view of the Si-nw-ChemFET with interconnections.

Figure 4: a) and b) schematic views of the Si-nw-ChemFET and the microfluidic channel. c) SEM view of suspended silicon nanowires inside a covered microfluidic channel (tilt 52°).

Figure 5: schematic view of the polarization for Si-nw-ChemFET characterizations.

Figure 6: distribution of the threshold voltage of the Si-nw-MOSFET.
The leakage current through the gate dielectric (I_G) is lower than 10^{-14}A (limits of the measuring instrument) for 100 parallel nanowires under 3V. So, the I_G current is lower than 10^{-17}A for one nanowire and shows the insulation quality of the SiO$_2$/Al$_2$O$_3$ double layer.

The number of parallel nanowires and the gate length does not influence the subthreshold slope, which is 6 decades/V.

The ratio I_{ON}/I_{OFF} is about 9 decades, thanks to the very low I_{OFF} current.

The transconductance is 4.3 times higher for nanowires with the short gate length in comparison with the long gate length, exactly the length ratio between the long and short gate lengths. The transconductance is also proportional to the number of parallel nanowires (figure 8).

Si-nw-ChemFET characterizations

The Si-nw-ChemFET is like a Si-nw-MOSFET which gate metallization is replaced by a microfluidic channel. Si-nw-ChemFETs were characterized in liquid phase with a specific setup. The liquid was polarized with an Ag/AgCl/KCl sat double junction glass reference electrode.

Like for the study of Si-nw-MOSFET, the influence of 2 parameters on electric characteristics was studied: the number of parallel nanowires (1 and 100) and the gate length L_G (0.9µm “short” and 3.9µm “long”), the length of the nanowires is 10µm.

The subthreshold leakage current (I_{OFF}) and the leakage current through the gate dielectric (I_G), for 100 parallel nanowires, were not measurable because they were lower than the limit of the measuring instrument used (5.10^{-11}A) (figure 9). That means an I_{OFF} current and an I_G current lower than 5.10^{-13}A for one nanowire. These very low leakage currents allow a high I_{ON}/I_{OFF} ratio reaching at least 107 for one nanowire and 109 for 100 parallel nanowires.

Concerning the subthreshold slope, excellent characteristics were obtained, with 8 decades/V. Like for the Si-nw-MOSFET, this value is independent of the number of parallel nanowires and gate length. As for the Si-nw-ChemFET, the transconductance is inversely proportional to the gate length.

Table 1: evolution of the main characteristics with the gate length and the number of parallel nanowires for the Si-nw-MOSFET.

<table>
<thead>
<tr>
<th>Structure</th>
<th>G_M or ON current</th>
<th>I_{ON}/I_{OFF}</th>
<th>Subthreshold slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 wire / L_G</td>
<td>X</td>
<td>9.108</td>
<td>6 (decades/V)</td>
</tr>
<tr>
<td>1 wire / L_G</td>
<td>3.9µm</td>
<td>4.109</td>
<td>6 (decades/V)</td>
</tr>
<tr>
<td>100 wires / L_G 3.9µm</td>
<td>100.X</td>
<td>9.108</td>
<td>6 (decades/V)</td>
</tr>
<tr>
<td>100 wires / L_G 0.9µm</td>
<td>100.4.3.X</td>
<td>4.109</td>
<td>6 (decades/V)</td>
</tr>
<tr>
<td>20 wires / L_G 0.9µm</td>
<td>20.4.3.X</td>
<td>4.109</td>
<td>6 (decades/V)</td>
</tr>
</tbody>
</table>

Figure 7: $Id(V_{gs})$ characterizations of Si-nw-MOSFETs, semi-logarithmic scale. ($Vds=0.1V$)

Figure 8: $Id(V_{gs})$ characterizations of Si-nw-MOSFETs, linear scale. ($Vds=0.1V$)

All these characterizations have confirmed the well operation of Si-nw-MOSFET. The main characteristics are grouped in the table 1.
The Nernstian response to pH variations of 58mV/pH is in agreement with theory (figure 10). There is no sensitivity differences when the gate length or the number of parallel nanowires changes, no hysteresis in the pH responses and no sensitivity to interfering ions Na⁺ and K⁺ (results not shown).

All these characterizations have shown the well behavior of Si-nw-ChemFET in liquid phase, and demonstrated the performances of the bilayer SiO₂/ALD-Al₂O₃ for ChemFET fabrication.

REFERENCES

CONTACT
Pierre Temple-Boyer: temple@laas.fr