3D RuO$_2$ microsupercapacitor electrodes based on Si nanowires, nanotrunks and nanotrees

Lotfi Benali Karroubi1, Saïd Sadki2, Pascal Gentile2, Anaïs Ferris1, Asma Eddarir1, David Pech1*

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
2Université Grenoble Alples, CEA, CNRS INAC-SyMMES UMR 5819, F-38000 Grenoble, France.
*contact: dpech@laas.fr

Energy autonomy keeps being a critical issue in the context of off-grid applications, such as autonomous wireless sensor networks, mostly being served by primary batteries. One solution to obtain a complete energetic autonomy of embedded microsystems, is to harvest and store the energy available in the environment, such as heat or vibrations. 3D on-chip microsupercapacitors show very interesting characteristics when it comes to these applications, thanks to their long lifetime and high power density [1].

In this work, pseudocapacitance of hydrous ruthenium oxide coated onto nanostructured silicon electrodes was investigated. Electrodeposition of hydrous ruthenium oxide was performed at room temperature by cyclic voltammetry from a 5 mM ruthenium chloride solution RuCl$_3$ on different nanostructured silicon electrodes (nanowires, nanotrunks and nanotrees) obtained by PECVD [2].

The resulted ruthenium oxide deposition was characterized by cyclic voltammetry in 0.5 M H$_2$SO$_4$ at different scan rates and by scanning electron microscopy (SEM). Capacitive behaviors were obtained for scan rates greater than 100 mV s$^{-1}$ with a specific capacitance as high as 18.8 mF cm$^{-2}$ for the coated silicon nanowires electrodes at 200 mV s$^{-1}$. This type of electrode material design is very promising for the integration of microsupercapacitors in wearable electronic devices and self-powered micro-systems, in which the key consideration is to minimize footprint occupancy while maximizing the energy.
