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Abstract
The concept of local consistency – making global
deductions from local infeasibility – is central to
constraint programming. When reasoning about
NP-complete constraints, however, since achieving
a “complete” form of local consistency is often con-
sidered too hard, we need other tools to design and
analyze propagation algorithms.
In this paper, we argue that NP-complete con-
straints are an essential part of constraint program-
ming, that designing dedicated methods has lead
to, and will bring, significant breakthroughs, and
that we need to carefully investigate methods to
deal about a necessarily incomplete inference. In
particular, we advocate the use of fixed-parameter
tractability and kernelization to this purpose.

1 Introduction
Constraint programming (CP) has been a very successful
framework for modeling and solving hard combinatorial
problems. Many problems are naturally framed as constraint
satisfaction or optimization problems, where a set of discrete
valued variables is to be assigned while satisfying a set of
constraints. For instance, CP has been successfully applied
to managing the aftermath of natural disasters [Hentenryck,
2013], optimizing the delivery of radiotherapy in cancer treat-
ment [Cambazard et al., 2012] or scheduling the exploration
of a comet [Simonin et al., 2012].

A first strength of CP often put forward, is its declarative
aspect. Another essential feature is the modularity and ver-
satility of the inference mechanisms. The key principle is
the notion of local consistency: if we can deduce that some
assignments are locally infeasible, for instance with respect
to a single constraint, then the same deduction holds glob-
ally. In particular, a constraint network is said domain1 con-
sistent [Waltz, 1975] when there is no further deduction to be
made, with respect to any single constraint, about the possible
values that its variables can take. It was shown that maintain-
ing this level of consistency during search was often a good
choice [Sabin and Freuder, 1994] and most constraint solvers
are designed according to this principle.

1Or equivalently arc consistent

The notion of global constraint makes this type of reason-
ing extremely powerful. A constraint is said global when it
corresponds to a class of relations on an arbitrary number
of variables. For instance, the constraint ALLDIFFERENT
ensures that a set of variables take all pairwise distinct val-
ues. Given a recurring subproblem for which there exists an
efficient algorithm, it is natural to derive the corresponding
constraint, that is, design a propagation algorithm responsi-
ble for making deduction locally to that constraint. For in-
stance, the propagation algorithm for the ALLDIFFERENT
constraint [Régin, 1994] is based on Hopcroft and Karp’s
maximum matching algorithm [Hopcroft and Karp, 1973].
Similarly, a number of constraints are propagated using re-
sults from flow theory [van Hoeve et al., 2006] or dynamic
programming [Pesant, 2004; Hebrard et al., 2009].

Since constraints must be easily checkable, they lie
within the complexity class NP. However, many recur-
ring subproblems that might qualify as constraints are NP-
complete [Bessiere et al., 2006b]. Examples of NP-complete
constraints are numerous. For instance for ensuring that
a set of Boolean variables represent a clique of a certain
size [Fahle, 2002; Régin, 2003]; that integer variables repre-
senting vertices of a graph are given a value corresponding to
an isomorphic vertex in a larger graph [Régin, 1995]; that the
least and highest number of occurrences of any value is within
some bounds [Schaus et al., 2007]; that two overlapping sets
of variables both have all pairwise distinct values [Kutz et al.,
2008]; that there is an upper bound on the cardinality of the
set of assigned values [Bessiere et al., 2006a]; that a sequence
of variables encode the successors of an Hamiltonian circuit
of bounded length in a graph [Ducomman et al., 2016]; or
that a set of tasks share a disjunctive [Baptiste and Le Pape,
1995] or cumulative resource [Baptiste and Le Pape, 1997].

However, whereas one can enforce domain consistency on
polynomial constraints, it is often necessary to find a compro-
mise between inference strength and computational effort on
NP-complete constraints. In this paper, we advocate the de-
sign of propagation algorithms for NP-complete constraints.
Furthermore, we argue that there is a need for a theoretical
characterization of the consistency enforced by these algo-
rithms. We show that fixed-parameter tractability [Downey et
al., 1999], and in particular the notion of kernel are extremely
relevant in this context and that the latter can be extended to
fill this role of measure of propagation strength.



2 NP-complete Constraints
A constraint network is a triple (X ,U , C) where X is a to-
tally ordered set of variables, the universe U is a finite set
of values and C is a set of constraints. A constraint C is a
pair (SC , RC) where the scope SC is a subset of X and RC

is a relation on U of arity |SC |. The Constraint Satisfaction
Problem (CSP) asks whether a constraint network (X ,U , C)
has a solution, that is, a |X |-tuple σ ∈ U |X | such that for each
C ∈ C, the projection σ(SC) of σ onto SC is in RC .

A global constraint is a class of relations, one for each pos-
sible value of its parameters. The most common parameter is
the number of constrained variables. For instance we can de-
fine the NVALUE [Pachet and Roy, 1999] constraint with one
relation per integer n given by the following predicate:
Definition 1 (NVALUE).

NVALUE(x1, . . . , xn, y) ⇐⇒ |{xi | 1 ≤ i ≤ n}| ≤ y
During search, in order to store the decisions and deduc-

tions, we use a special type of relation over X , the domainD.
There is not a unique type of relation used for that purpose,
for instance the search space can be encoded as a Boolean
Decision Diagram [Hadzic and Hooker, 2007]. However we
consider here the canonical finite discrete domain where the
D relation is restricted to conjunctions of finite unary rela-
tions, one for every variable x ∈ X , which we denote D(x).
We write D′ ⊆ D as a shortcut for ∀x ∈ X D′(x) ⊆ D(x).
Definition 2. A constraint C is said domain consistent on a
finite discrete domain D if and only if

∀D′ ⊆ D ∃τ ∈ RC ∩ (D(SC) \ D′(SC))

The problem of achieving domain consistency of a domain
D with respect to a constraint C consists in finding the largest
domain D′ ⊆ D such that C is arc consistent on D′. There
is a unique largest arc consistent closure of a finite discrete
domain D with respect to a constraint C.

Notice that achieving domain consistency is polynomially
reducible to checking the satisfiability of a constraint, i.e.,
finding a tuple τ ∈ D ∩ C. Given an algorithm for checking
satisfiability, for every variable x and every value v ∈ D(x)
one can check the satisfiability of C w.r.t. D′ where D′(x) =
{v} andD′ = D otherwise. If the constraint is not satisfiable,
then the domain consistent closure ofD is such that v 6∈ D(x)
and we can change D accordingly. Otherwise the domain
consistent closure is such that v ∈ D(x) and we leave D
unchanged. This procedure terminates after

∑
x∈SC

|D(x)|
steps. The converse is trivial, since a constraint is satisfiable
if and only if its domain consistent closure is not empty. We
therefore say that a constraint is NP-complete if checking its
satisfiability is NP-complete, even though achieving domain
consistency is not a decision problem.

The constraint NVALUE is NP-complete since checking if
there exists a tuple in a domain D such that |{τ(xi) | 1 ≤
i ≤ n}| ≤ y is equivalent to finding a hitting set of the col-
lection {D(x1), . . . ,D(xn)} of size maxD(y) [Bessiere et
al., 2006a]. Therefore, achieving the domain consistent clo-
sure is often considered too costly for this constraint. For
NVALUE and other NP-complete constraints incomplete ap-
proaches are used instead.

Relaxing the domain: A common way to reduce the com-
plexity of propagating a constraint is to relax the domain re-
lation D. For instance, the notion of bounds consistency is
widely used in this situation. Let interval domains be the
class of relations restricted to conjunctions of finite unary re-
lations, one for every variable x ∈ X , of the form l ≤ x ≤ u.
Bounds consistency is the property obtained by applying Def-
inition 2 to interval, instead of discrete, domains.

The hitting set problem has a polynomial algorithm when
the sets are discrete intervals. Therefore, the relaxtion from
finite discrete domains to interval domains make satisfiabil-
ity checking and thus bounds consistency polynomial. The
best algorithm achieves both in O(|X | log |X |) [Beldiceanu,
2001]. This is true for many NP-complete global constraints.
For instance the constraint GCC, which channels the number
of occurrences of values in a set of variables X to another set
of variables Y is NP-complete for discrete domains [Quimper
et al., 2004], but polynomial if the domain relation is relaxed
to intervals for the variables Y [Régin, 1996].

Decomposing the constraint: Another common way to deal
with NP-completeness is to decompose the constraint. A con-
straint network I = (X ,D, C) is a decomposition of a con-
straint C if and only if SC ⊆ X and σ is a solution of I if and
only if σ(SC) ∈ RC . In other words, it is a constraint net-
work on a superset of SC such that its set of solutions, when
projected onto SC is exactly the set of tuples in RC .

Decompositions are used in countless constraint program-
ming approaches. A lot of effort has been put into the study
of decompositions and in particular when it is or when it is
not possible to emulate algorithms through decompositions,
both for polynomial and NP-complete constraints [Narodyt-
ska, 2011]. For instance, it was shown that propagation al-
gorithms for the NVALUE constraint can be emulated for the
same time complexity, however at the cost of a much higher
space complexity [Bessiere et al., 2010].

Moreover, decompositions are sometimes used as a way
to relax the problem of achieving the domain consistent clo-
sure, even though an efficient dedicated algorithm is then pro-
posed to compute the closure. For instance the O(n log n)
“Timetabling” method for reasoning about a set of n tasks
consumming energy from a cumulative resource [Le Pape,
1988; Beldiceanu and Carlsson, 2001] over time can be seen
as achieving bounds consistency on a decomposition involv-
ing Boolean variables xij standing for whether task i is
processed at time j, however with a far lower time com-
plexity. Similarly, “Edge Finding” algorithms [Nuijten and
Aarts, 1994; Vilı́m, 2009] achieve bounds consistency (in
polynomial time) on a decomposition (of exponential size).
Lastly, Ouellet and Quimper’s algorithm [Ouellet and Quim-
per, 2013] achieves bounds consistency on the conjunction
of these two decompositions in O(kn log n) time with k the
number of different tasks’ consumptions.

Approximation: Often, NP-complete constraints on a set of
variables X can be easily seen as enforcing that an |X |-ary
cost function π : D|X | 7→ Q ∪ {∞,−∞} is non-positive.2
For instance, the constraint NVALUE corresponds to the fol-

2This is not restrictive as any relation maps tuples to 0/1.



lowing cost function: |{xi | 1 ≤ i ≤ n}|−y. The intersection
graph of {D(x1), . . . ,D(xn)} is the graph with one vertex vi
for i ∈ [1, n] and an edge (vi, vj) iffD(xi)∩D(xj) 6= ∅. The
independence number of this graph is larger than or equal to
the minimum hitting set of the collection. Therefore, this is a
valid upper lower bound for y [Bessiere et al., 2006a]. In this
case, the approximation offers no guarantee, yet it is a rela-
tively effective method in practice, often outperforming the
bounds consistency approach.

More generally, when a method with a guaranteed approxi-
mation ratio exists for a cost function π, this method provides
both a primal and a dual bound which is extremely valuable.
In general, however, approximation results are still largely
underused within the context of constraint propagation.

3 Propagation via Kernels
The complexity of a problem can be more finely character-
ized by considering parameters besides the size of the input.
Parameterized complexity aims at understanding which pa-
rameters are relevant to explain the hardness of a problem.
Given a problem P and a parameter p, (P, p) is in the FPT
class if there exists an algorithm that can decide an instance
I of P in time f(p)|I|O(1) where f is a computable function.

A previous study [Bessiere et al., 2008] of the parameter-
ized complexity of global constraints, and of their relevant
parameters, showed that this approach was promising. In par-
ticular, the NVALUE constraint is FPT when the parameter is
the number of “holes” in the domains [Bessiere et al., 2008].

Moreover, it is often possible to compute kernels of FPT
problems, which are extremely relevant in this context.

Definition 3. A kernelization for a problem P and a param-
eter p is a polynomial-time computable function that maps
each instance x and parameter value k to an instance x′
and parameter k′ of the same problem such that x is a yes-
instance if and only x′ is, |x′| ≤ f(k), and k′ ≤ g(k) for
some computable functions f, g.

There is intense research both on FPT algorithms and ker-
nelization methods [Cygan et al., 2015]. Characterizing a
kernel is a very significant step in understanding the combi-
natorial structure and efficiently reasoning about a constraint.
Intuitively, the difference between the original instance and
the kernel is composed of inconsistent (or entailed) values.

Consider for instance the vertex cover problem, asking
whether there is a subset of at most k vertices of a graph G,
such that every edge has at least one extremity in the cover.
The Buss rule consists in adding vertices of degree k+1 to the
cover, since otherwise their neighbors would be in the cover.
This very simple propagation rule yields a kernel of size k2.

However, classical kernels are not always correct propaga-
tion. For instance, the smallest kernels for the vertex cover
problem [Abu-Khzam et al., 2007; Nemhauser and Trotter Jr,
1975] are based on crown decompositions of the graph.

Definition 4. A crown decomposition of a graph G is a par-
tition (H,W, I) of V such that vertices in I have an edge
only with vertices in W and there is a matching of size |W |
between W and I .

The size of a vertex cover can never be increased by re-
moving all vertices from I and adding all vertices from W .
However, this is a correct dominance rule, but not a correct
propagation rule: feasible or even minimal solutions might
involve vertices from I . Similarly, an efficient kerneliza-
tion using dominance was proposed for the NVALUE con-
straint [Gaspers and Szeider, 2011]. For the same reason, this
method is to be used within the probing procedure described
in Section 2 to achieve domain consistency through satisfi-
ability checks: for every variable-value pair, the problem of
deciding if the constraint is satisfiable when restricting the
domain accordingly is solved on the kernel. In other words,
several exponential satisfiability checks have to be performed.

In [Carbonnel and Hebrard, 2016; 2017] we proposed an
approach to propagating NP-complete constraints based on
a new definition of “loss-less” kernelization tailored for con-
straint propagation. Intuitively, z-loss-less kernels are kernels
with an extra loss-lessness property: Whereas solving a clas-
sical kernel is sufficient to solve the original instance, achiev-
ing domain consistency on a loss-less kernel is sufficient to
achieve domain consistency on the original instance. In other
words, there exists a polynomial algorithm, which, given the
domain consistent closure of the loss-less kernel, computes it
for the original instance. This is much more consistent with
the spirit of kernelization, extends smoothly constraints with
polynomial-time propagators and yields a propagation algo-
rithm with running time O(g(p) + |I|O(1)pO(1)), instead of
O(|I|O(1)g(p)) for probing plus classical kernelization.

There is caveat, however. Consider again constraints de-
fined as minimizing a cost function, for instance the NVALUE
constraint which ensures that the cardinality of the set of val-
ues taken by the variables x1, . . . , xn is at most y. As long as
the domain of y contains high values, the constraint is un-
likely to propagate much. In fact, if n ∈ D(y) then the
constraint is completely inoperant. More generally, kernels
whose size decrease when the constraint get tighter should
be priotirized since they are the most useful with respect to
propagation. When defining constraints as minimizing a cost
function such as the NVALUE constraint, the tightness is very
clearly related to the gap z from 0 to the minimum of πD(X )
under the current domain D. We therefore use this extra pa-
rameter z in the definition of loss-less kernels:

Definition 5. Let Π be a set of cost functions, and C a global
constraint defined as the relations π(X ) ≤ 0 for π ∈ Π.

A z-loss-less kernelization of C with parameter p is
a polynomial-time computable function mapping each in-
stance (π,X ,D) and parameter value k to an instance
(π′,X ′,D′) and parameter k′ of the same constraint such
that if −min(πD(X )) ≤ z, then there is a polynomial al-
gorithm achieving domain consistenty of D w.r.t. π(X ) ≤ 0
given the the domain consistent closure of D′ w.r.t. π′(X ′) ≤
0, |π′| + |D′| + |X ′| ≤ f(k), and k′ ≤ g(k) for some com-
putable functions f, g.

The results in [Carbonnel and Hebrard, 2017] show that
loss-less kernels exist: There is a (z + 2)k z-loss-less kernel
for the vertex cover problem parameterized by the size k of
the cover, thus matching the result of Nemhauser [Nemhauser



and Trotter Jr, 1975] for z = 0.Similarly, there is a ∞-loss-
less kernel max(6k, k2/2 + 7k/2) kernel for the edge dom-
inating set parameterized by the size of the dominating set,
thus matching the result of Hagerup [Hagerup, 2012].

Moreover, they are not mere theoretical curiosities: kernel-
based propagation was successfully applied to a constrained
vertex cover problem [Carbonnel and Hebrard, 2016].

4 Conclusions
In this paper we have surveyed different approaches to prop-
agating NP-complete constraints and argued that designing
dedicated methods is extremely valuable. Moreover, among
the possible ways of tackling the propagation of NP-complete
constraints (approximation, relaxation, decomposition, etc.)
we argue that fixed parameterized complexity and in particu-
lar kernelization offers several extremely relevant features:

Firstly, the value of the parameter, as well as the size of
the gap z, changes during search. Therefore, it is possible
to target when kernelization is most likely to being beneficial
and thus use it in an opportunistic way.

Secondly, loss-less kernels are designed to achieve domain
consistency of the full instance with a single call to a possi-
bly exponential algorithm to compute the closure of the ker-
nel. However, in practice, the kernelization procedure in itself
makes some incomplete inference while being polynomial.
The kernelization process in itself can therefore be used as a
polynomial propagation procedure.

Finally, the guarantee on the size of the kernels entails a
guarantee on the strength of this inference. In other words,
the size of the kernel is a valuable criterion to compare the
achieved level of consistency.
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[Régin, 1996] Jean-Charles Régin. Generalized Arc Consis-
tency for Global Cardinality Constraint. In Proceedings
of the 13th National Conference on Artificial Intelligence,
pages 209–215, 1996.
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