
HAL Id: hal-01874447
https://laas.hal.science/hal-01874447

Submitted on 14 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomic Management Approach for Dynamic Service
Based IoT Systems

Guillaume Garzone, Nawal Guermouche, Thierry Monteil

To cite this version:
Guillaume Garzone, Nawal Guermouche, Thierry Monteil. Autonomic Management Approach for
Dynamic Service Based IoT Systems. International Symposium on Networks, Computers and Com-
munications (ISNCC 2018): Internet of Everything, Data Analytics and Smart Cities (ISNCC-2018
IoE-DASC), Jun 2018, Rome, Italy. 8p. �hal-01874447�

https://laas.hal.science/hal-01874447
https://hal.archives-ouvertes.fr

Autonomic Management Approach for
Dynamic Service Based IoT Systems

Guillaume Garzone
LAAS-CNRS, Université

de Toulouse, INSA
Toulouse, France

Email: guillaume.garzone@laas.fr

Nawal Guermouche
LAAS-CNRS, Université

de Toulouse, INSA
Toulouse, France

Email: nawal.guermouche@laas.fr

Thierry Monteil
LAAS-CNRS, Université

de Toulouse, INSA
Toulouse, France

Email: thierry.monteil@laas.fr

Abstract—The Internet of Things (IoT) continues to expand
undeniably fast to reach billions of connected heterogeneous de-
vices. This is changing the way systems are built: new applications
integrating software and physical devices are emerging in differ-
ent domains, such as health, smart building, and smart cities.
This brings opportunities to enable new added value services.
Nevertheless, building and managing such highly dynamic and
heterogeneous infrastructures built upon a multitude of mobile
and resource-limited devices is challenging. In this paper, we
propose a semantic based autonomic management approach for
service oriented IoT systems. The aim is to support building
and managing highly dynamic new value added IoT services.
The proposed approach relies on a semantic based model to
characterize the system properties and then enables semantic
reasoning, and graph grammars to enable its management and
evolution. A use case is proposed to show the related features of
the proposed approach and an evaluation study is presented.

I. INTRODUCTION

During the past few years, the IoT expanded in an im-
pressive way and is still growing in terms of number of
connected devices. More than 20 billions of connected things
are expected in the next years1. This growth goes along with
the development of new solutions and the enhancement of
smarter and more complex systems.

IoT presents a suitable opportunity to enable the develop-
ment of innovative applications as it is accepted and adopted in
several domains such as smart cities, health domain, industry
and transportation. Indeed, the combination of IoT with ex-
isting technologies and paradigms such as Cloud Computing,
Service Oriented Computing, and powerful software analytic
capabilities, is changing the way systems are developed.

In parallel to advances, IoT brings complex challenges
which require investigations. In this paper, we are particularly
interested in the problem of managing on the fly dynamic
IoT based systems. Usually, such systems rely on the inte-
gration of heterogeneous connected things, such as sensors
(e.g., temperature, presence, pollution, etc.), actuators (e.g.,
remotely controllable devices that acts on the environment),
and other entities such as software services which add value
to data provided by the connected objects (e.g., meteorological
information, open services and open data, remote control of
entities) and enrich the possibilities offered by these systems.

1http://www.gartner.com/newsroom/id/3598917

The integration of those complex and high level services
along with elementary services provided by the connected de-
vices to build complex smarter systems is still challenging. The
cooperation and interoperability between things and services
become a key point to increase and to improve the individual
value they provide [1], [2]. Many application domains may be
impacted by the development of those smart systems [3]: in
the context of smart city, it enables the automatic management
of the system with several considerations, such as energy
consumption optimization or diverse metrics monitoring.

In this paper, we focus on the problem of autonomic
management of high dynamic IoT based systems. Our goal
consists in autonomously managing such complex systems to
cope with their dynamic nature. Indeed, IoT based systems
(e.g., in a smart city scenario) evolve in dynamic environments
where the devices can be mobile, appear and disappear, the
requirements can evolve, etc. Thus, defining autonomic system
able to self-manage while tackling evolutions and changes is
necessary. This problem has been studied in the field of service
oriented information systems [4] [5] [6]. However, these works
assume that exhaustive description of the whole behaviour of
the system is given by users. Then, the goal is to instantiate
the given specification dynamically. In this paper, we do not
assume that the specification of the targeted system is given.
The proposed work relies on the description of requirements
based on awaited data and the properties of the available
objects to build and manage dynamically the system. In this
context, we propose a semantic and graph based autonomic
management approach for service oriented IoT based systems.

The paper is structured as follows: a motivating example is
presented in Section II and the global structure of the proposed
work is presented in Section III. The autonomic management
framework models are presented in details in Section IV and
V. Then, it is followed by the evaluation study in Section VI.
Before concluding, background and related works are studied
and discussed in Section VII.

II. MOTIVATING EXAMPLE

In this paper, a smart city scenario is considered where
different entities exchange contents. A content is equivalent
of any information or data, that is made available (i.e.,
accessible through desktop or mobile applications, software

services, cloud platforms, etc.). This content can have different
provenances and topics, for instance city related data which
gives information about the city itself (e.g., general informa-
tion, alerts), sensors deployed in the city (e.g., air quality
monitoring, parking slots availability, etc.), data related to third
party entities such as shops, cultural organisms, events in the
city or any other interesting events.

In the smart city two kind of entities interacting with this
content are to be distinguished:

• content producers: entities that create and provide con-
tent to broadcast in the city or sent to the interested users
(e.g., connected sensors, etc.)

• content consumer: entities that are interested in receiv-
ing specific information about topic(s) they are interested
in, but also alerts, content updates, etc. For instance, a
smart phone of a citizen registered as a user in the smart
city is a content consumer.

So, different kinds of contents are produced and provided by
content producers and content consumers express their interest
for a certain kind of content more customized or not so they
could receive updates about this kind of content. Contents can
be broadcast in the city (in public transportation, display or
advertising boards, etc.). Display devices may be available
with several broadcast modes (audio, text, image, video. . .)
and will diffuse collective content on public devices, and more
customized content on personal devices (a smart-phone for
instance).

An interesting kind of entity interacting within the smart
city are the connected vehicles and particularly the connected
buses. These connected buses are a key element to bring
content to the citizens. Citizens interact with the system
through their own devices (e.g. smart-phones) and mobile
applications where they can express interests and communicate
their position. In addition, it is assumed that the buses are
equipped with connected display devices and are accessible
through services available in the Cloud. These devices will
display dynamic content regarding to the location of the bus
in the city, where it is going ahead and the services available.
Moreover, more general information may be displayed too, as
well as urgency or priority content.

Users can express different kind of interests that can change,
a multitude of contents can be provided dynamically by
different providers (connected devices, software components
deployed on the Cloud, etc.), IoT devices (e.g., sensors) can
be mobile around the city and can be connected, disconnected
and reconfigured. In this context, being able to build auto-
nomic systems to self-adapt to changes and evolutions while
guaranteeing the satisfaction of citizens needs is of paramount
importance.

The problem
To summarize, the problem we focus on can be described

as follows: given a dynamic system which is built upon a
multitude of entities abstracted as services and characterized
by their inputs and outputs, evolving targets that aim to provide
data to services, our goal is to enable autonomic management

of this kind of systems to cope with changes and evolutions so
that the specified targets are fulfilled throughout the execution.

III. HIGH LEVEL ARCHITECTURE

Fig. 1. Global structure of the system

To deal with the stated problem, we propose the manage-
ment framework depicted in Figure 1. It consists of three
main elements: the autonomic manager, the Knowledge base
(KB), and the underlying IoT system.

The KB enables to store and share knowledge about the
monitored system, its behaviour which can be used, for
instance, to adapt the system regarding what happens. The au-
tonomic manager is the high-level entity in charge of managing
the underlying part. It relies on the MAPE-K model introduced
in [7]. This paradigm structures an autonomous system in four
main components: the Monitor monitoring an environment,
the Analyser making decisions to act on the system with
a Planner planning actions to be taken, and an Executor
executing the actions. The monitor generates symptoms based
on the relevant events coming from the monitored system. The
analyser considers the different symptoms sent by the monitor
component and generates requests for change (RFC) based
on the symptoms and given policies. The planner receives an
RFC from the analyser and generates execution plans to be
executed on the system by the executor.

In this work, the manager interacts with both the KB
and IoT system. The IoT system regroups the connected
devices deployed in the city, the connected vehicles, and
other connected entities, but also the services associated to
the objects or software services (e.g., deployed on the Cloud).
The monitor maintains the KB up to date with the current state
of the system thanks to the connection with specific sensors
and metrics, and the executor receives plans, generated by the
planner, to execute on the system: basically a set of services
to invoke according to branching structures. In this paper, we
particularly focus on the analysis and planning phases where
the decision making takes place and the actions to perform
are generated. The monitor and executor components are not
studied in this paper however existing advanced monitoring
techniques can be used [8] [9] [10].

The KB is a key component of the system. In our approach,
it is compound of two models: an ontology [11] and a graph
grammar (as introduced in [12]) based models. It is important
to notice that those models can evolve or change, regarding to
the requirements and context or the expected behaviour of the

managed system. The ontology is used to store semantic meta-
data about the IoT system and to enable semantic reasoning
which helps the analyser to make decisions (Section IV).
Regarding the planner, it relies on a graph grammar based
model to generate the execution plan (Section V-B) according
to an RFC generated by the analyser.

In the following sections, we present the different models
used by the proposed framework and their instantiation.

IV. THE IOT SYSTEM ONTOLOGY BASED MODEL

The ontology based model used in the framework is pre-
sented in Figure 2. The core of this ontology has been
developed for the semantic characterization of the IoT system
of our use case. It extends IOT-O ontology2 [11] concepts
to define objects (devices) and services. Indeed, the IOT-O
ontology gathers several recognised ontologies and enrichment
regarding to relevant meta data about services, such as op-
erations and parameters for REST services and IoT devices
(e.g., HRESTS3 ontology) or properties for actionable devices
(e.g., SAN4). For more details on the IOT-O ontology and the
gathered ontologies, we refer reader to [11].

Fig. 2. The ontology based model of the content spreading to citizens

A. Entities at stake in the model

In the following, the proposed extensions of IOT-O are
presented.

Content: This concept can represent a raw data or an infor-
mation in several formats such as html document, video teaser,
audio file, temperature, etc. provided by content producers
entities.

Topics of interest This concept represents any kind of topic
that categorizes the content and may be interesting for entities
connected to the system. For instance, a topic of interest can
be “air quality”, so the interested third parties can express an
interest in “air quality”, related content i.e. any information,
update of data, and so on.

Content consumer (resp. producer) represents any entity
in the system that is interested in getting access to content
(resp. provides a content). In our use case, content consumers
(resp. providers) consist in persons and connected vehicles
(e.g. buses) (resp., sensors, city communication pole, etc.).

2https://www.irit.fr/recherches/MELODI/ontologies/IoT-O.html
3http://www.wsmo.org/ns/hrests/
4https://www.irit.fr/recherches/MELODI/ontologies/SAN

Location The location concept is a representation to dis-
tinguish different places in the city or even the whole city
itself.

The broadcast devices (also called display devices) They
represent the physical objects that broadcast content to the
considered entities. For instance, if a person possesses a smart-
phone it is considered as a broadcast device as it is accessible
to send content to it (e.g., through a mobile application).

B. Relations

The object properties defined in the ontology (relations
between concepts) are represented in Figure 2. Regarding
broadcast devices and entities, the object property number 1 in
Figure 2 represents entities that own a broadcast device and
property 2 represents entities that have access to broadcast
devices. For instance, citizens can own a smart-phone with a
mobile application (considered as a private broadcast device)
and if they are passenger of a bus with embedded displays,
they have access to the broadcast device(s) of the bus too.
Moreover, besides the locations and topics of interest, a key
object property is the object property number 3. This property
characterizes the fact that a content should be sent to a set of
entities based on their location and interests. This knowledge
is a key element in the decision making for the analyser, and
is presented in more depth in Section IV-C.

Example 1:
In our use case, the monitor instantiates the ontology and

keeps it up to date with the current state of the system. A
simple example of instantiation of the ontology is presented
in Figure 3.

Fig. 3. A simple instantiation of the ontology

In this example two contents are identified (C1 and C2) and
there are one bus and two persons considered in the system.
The person 1 is passenger of the bus and the person 2 is not
a passenger yet. Two different topics are instantiated (T1 and
T2) with two different locations (L1, L2). The first content is
related to the second location and the second content is related
to both locations. The associated services are presented on
top and bottom of the figure. For instance, the second content
has two possible services to retrieve the content (e.g., two
different protocols and data types can be used). The relations
are described on the right side of the figure.

C. SWRL Rules and Analysis

The analyser determines which entities are interested in the
targeted contents thanks to the semantic KB. This feature is
characterized by Semantic Web Rule Language (SWRL) [13]
rules embedded in the semantic KB. The set of rules enable
the system to infer some knowledge using a reasoner, e.g.,
the different contents that should be sent to a set of entities.
However, it does not include how to do so. The role of the
analyser is to extract this knowledge from the KB and to
generate an RFC (Request For Change) for the planner to plan
how to send each content to the concerned entities, based on
which devices they have access to.

Several rules are exploited in the inference of knowledge.
An example of an SWRL rule is shown the Listing 1: it
determines if either a content should be sent to an entity (a
bus for instance) or not, based on the current knowledge. Other
rules enable the system to identify if persons are passenger of
a bus and so infer they have access to its broadcasting device
and inherit its position.

ContentConsumer (? e) ˆ
i s I n t e r e s t e d I n (? e , ? t o p i c) ˆ
C o l l e c t i v e C o n t e n t (? c) ˆ
h a s R e l a t e d T o p i c (? c , ? t o p i c) ˆ
h a s R e l a t e d L o c a t i o n (? c , ? l o c) ˆ
i s L o c a t e d T o (? e , ? l o c) −> shou ldBeSen tTo (? c , ? e)

Listing 1. Example of SWRL rule of the ontology

Other similar rules are at stake to consider different possi-
bilities, including the differentiation between private contents
and collective ones.

Using the proposed SWRL rules and the ontology, when
new contents are available (symptom) the analyser may trigger
the reasoner to infer knowledge based on what is currently in
the semantic KB. Then, the analyser generates an RFC based
on the inferred knowledge in the ontology: the inferred object
properties indicating to which entity the content should be sent
will represent the link between the data producing services
and the data consuming services the manager has to consider.
An example of inference based on the ontology instance of
Example 1 and then RFC generation is depicted in Figure 4.

Now the RFC, the execution plan and the graph transfor-
mation models will be detailed.

V. THE GRAPH ORIENTED MODEL

In this section the graph based models used by the frame-
work are detailed: the RFC, the transformation and execution
plan models.

A. Request for change to perform (RFC)

When an action needs to be performed on the managed
system, a requirement for the action to perform is generated
by the analyser. It is represented by an RFC graph and an
associated graph grammar that enables the system to generate
the execution plan accordingly.

The RFC is a graph containing the relevant information
regarding the different services to use and some other elements

linked to the services. In our use case, it contains content to
broadcast and the interested parties extracted from the KB.
This RFC graph is transmitted to the planner to perform graph
transformations in order to generate the execution plan linking
the different producing and consuming services. An important
point to highlight here is the generic aspect and modularity
of the analyser: new features can be easily integrated in the
system through new sets of symptoms associated with RFC
and a graph grammar to generate execution plans.

The RFC is the initial graph necessary for the planner to
enable transformations and thus provide a plan to be executed.

Definition 1: (Requirement model: RFC) A requirement
is defined by two elements: an RFC graph and an associated
graph grammar.

Let Γ be a set of types of nodes. An RFC graph is a tuple
(N ,E,τ) in which :

- N is the set of nodes that characterizes the set of
services and entities at stake;

- E ⊆ N ∗ N is the set of edges that characterizes the
data flows

- τ : N → Γ is a function that maps nodes to their types

The RFC can be instantiated as follows with the following
types of nodes:
• services, noted S: represent the different services at stake

(data producing or data consuming services)
• contents, C: represent relevant data (provided by ser-

vices) that can be consumed by a set of entities.
• entities, E: represent persons, buses, or whatever entity

in the system interested in getting access to data produced
by services.

• broadcast devices, D : represent any kind of devices
that enable the system to broadcast data to entities. It
can consist in a smart-phone through an application, or
connected screens in buses. Those devices are associated
with a set of services that consume any data produced by
other services and will perform the display action. Also,
the entities have access to one or more broadcast devices
and this knowledge is represented by an edge between an
entity and a device node.

To summarize, the analyser identifies which elements to
include in the RFC based the received symptoms and the
current knowledge in the KB. In our use case, it considers
which contents should be sent to which entities, and the
necessary elements to enable by the planner to generate the
execution plan. To do so, it gathers informations about entities:
which devices they have access to, and what are the producing
and consuming services associated to the content and the
broadcast devices.

Example 2: Keep going with our previous example. As
shown in Figure 4, the analyser triggers the reasoner of
the semantic KB (instantiated in Figure 4.(a)) and observes
changes. This behaviour is based on received symptoms in
consequence of the availability of new contents (here C1 and
C2). Some knowledge is inferred as shown in Figure 4.(b):
the targeted new contents are interesting for a set of entities

Fig. 4. An instance of the system and the different steps of the manager

and should be sent to them. The inferred knowledge is shown
in discontinuous lines (content to send to entities) and dot
lines (inferred properties for passengers). Then, the analyser
generates the RFC accordingly (as shown in Figure 4.(c)).

In the next section, the execution plan model and the graph
grammar model are defined and an instance is provided in the
context of the considered use case.

B. Graph transformation and execution plan

As mentioned previously, the planner receives the RFC
from the analyser component and the goal is to generate
an execution plan. This implies transformation actions to be
performed on the RFC graph in order to generate the plan
graph. Indeed, the execution plan directly produces a workflow
of services to call (e.g., retrieving data from a set of services,
performing actions or transformations before sending contents
to the identified entities by adding additional services to fit
awaited formats, merging contents, etc.).

Such transformations are formalized using graph grammar
based formalism. A set of graph-rewriting rules (transforma-
tion rules) is defined. The result of the transformation is a
plan graph model that characterizes the set of concrete linked
producing and consuming services according to the interests
of the considered entities and the broadcast devices they have
access to (associated to content consuming services). The
produced contents can either be merged via the merge gateway
or chosen via a choice gateway between two producers that
provide the same content.

Definition 2: (Execution plan graph model)
The execution plan model is similar to the RFC model.
Instantiated in our use case, the following types of nodes are
distinguished:

• services S: the set of services node as defined in RFC
model.

• gateway nodes G: gateways are used to define the struc-
ture branching to use when handling service’s outputs. It
can consist in merge nodes (noted M), that indicate some
outputs or inputs of services need to be merged before the

next step, or gateway OR nodes that indicate that several
choices of services are available for the same action.

Several ways of specifying graph rewriting rules have been
proposed [12]. In this work, the Single Push-Out (SPO) [14]
approach is used.

Definition 3: (Graph grammar and rewriting rules)
A graph rewriting rule r = Lr

mr−→ Rr is characterised
by a couple of graphs (L = (N,E, τ), R = (N ′, E′, τ ′))
and a morphism mr = (fr, ∅) of a sub-graph LI = (N I

L =
Dom(fr)EI

L) from L to R.
The left graph (Lr) of the rule represents the pattern that

is matched in the graph to transform and the right part (Rr)
represents the transformed pattern. When the rule r is applied
to a graph G, if an image of Lr exists in G, the rule is
applied and replaces the matched Lr graph by the associated
Rr. Sometimes a Not Applicable Condition (NAC) is used
to avoid appliance of the rule in case the indicated pattern is
found.

For lack of space, the instance of the whole graph grammar
used in our use case can not be shown in this paper. However
the core rules of the grammar are presented in Figure 5.
The L and R graphs of each rule are represented and the
fr function associated to the morphism mr of the rule is
materialized by the arrow. This provided set of rules enables
the planner to merge services before sending their contents to
a broadcast device based on who should receives this content
and which devices these entities have access to. The rules
are separated in three layers: the first one is dedicated to
introduce the merge nodes (M) in the graph to merge the
contents, the second layer works on the results of the first
layer to make the connection between the created M nodes
and the services, and the third layer is dedicated to clean up
the graph to remove the remaining isolated nodes {E,D,C}
(i.e., persons, broadcast devices, and contents nodes) and keep
only the nodes {S,M,OR} (i.e., services, Merge, Or nodes)
to obtain the execution plan.

These rules enable the creation of intermediary nodes in the
graph (merge nodes, M) in order to aggregate the output of
several services before sending it to the consuming services.

Fig. 5. Set of transformation rules from the Graph Grammar instantiated in our use case

In our use case, the idea is to regroup the contents interesting
several entities who have access to a common display device.
These contents, retrieved from the content producing services,
will be merged during the execution phase and used as input
for the consuming service associated to the broadcast device.

The rule 1 and 2 aim to create M nodes. The first rule
creates M nodes based on the fact that two entities should
receive the same content and share a common display device
(for instance they are passenger of the same bus). The strategy
of the rule 2 is similar but creates M nodes for each remaining
content-entity link. The rules 3, 4 and 5, use existing M nodes
to connect contents to devices, or aggregates M nodes to avoid
multiple M nodes linked to the same device (rule 4 and 5).

Now one example of the behaviour of the whole grammar
on a given RFC is introduced.

Example 3: Let us consider the example presented in
Figure 4. Figure 4.(b) shows a simple instance of a RFC graph
generated by the analyser. Figure 4.(c) presents the plan graph
model resulting from the RFC graph transformation according
to the defined rewriting rules. The obtained plan graph states
that contents obtained thanks to service 1 and either service
2 or service 3 are merged before being sent to service 4, and
the content obtained with service 2 or service 3 is sent to
service 6.

In the next section the experimental set-up of the proposed
approach is presented.

VI. EVALUATION STUDY

To validate the approach presented in this paper, two eval-
uations were conducted: a prototype of the proposed system
demonstrating its functionalities, and a performance evaluation
with respect to the response time of the system according to
different parameters.

A. Proof of concept prototype

A prototype of the autonomic manager has been imple-
mented and deployed to demonstrate the functionalities of the
proposed approach and include it in a mock-up. The idea is
to represent a connected bus in a smart city with different
possible passengers and areas in the city with different kind of
data available regarding the area. The prototype is compound
of several elements: a computer with the Eclipse OM2M mid-
dleware5 to connect the devices and expose their data thanks
to the standard oneM2M6 REST Application Programming

5http://www.eclipe.org/om2m
6http://www.onem2m.org

TABLE I
SETTING OF THE DEMONSTRATION SYSTEM

Area 1 2 3 4
Name Init Industrial City Centre Museum

Content Temperature
Temp.
Particles
Gas

Temp.
Particles

Temp.
State of museum

TABLE II
DISPLAYED CONTENT REGARDING THE PASSENGERS (PASS.) AND THE

POSITION OF THE BUS

Area 1 1 2 3 3 4

Pass. ∅ P1 P1, P2 P1, P2 P2 P2

Display ∅ Temp.
Temp.,
Gas,
Particles

Temp.,
Particles Temp.

Temp.,
Museum
info

Interface (API), an Intel Edison, to connect several sensors to
the IoT middleware (OM2M) and a RaspberryPi to simulate
the connected bus with a mini display broadcasting content
dynamically. Some sensors are used for monitoring only as
an RFID sensors to detect which passenger in the bus or the
changes of location of the bus based on GPS position (the bus
moves among the areas).

The simulated system is configured as shown in Table I
with several areas among the smart city and different services
providing data (sensors or else). The different data provided is
linked to several topics: general information for Temperature,
air quality for particles and polluting gas measurements,
and museums for museums information. Also, two persons
are considered in the system. P1 is interested in general
information and air quality and the P2 is interested in general
information and museums.

The different contents displayed in the bus are shown in
Table II. The displayed content is obtained when the manager
executes the generated service plan retrieving data from the
data producing services and sending the merged result to the
service of the bus display.

Thanks to this deployment, the approach has been validated
and its functionality enables the autonomic manager to auto-
matically use different services to retrieve data and provide it
to the right service(s) dynamically and on the fly.

B. Response time dimensioning

Other experiments were conducted to study the execution
time of the approach. Indeed, in our use case the system
should respond in a reasonable time to avoid the case where
entities miss information. To do so, a set of initial Ressource

Description Framework (RDF) files were generated regarding
different parameters in order to simulate different situations
and contexts: number of available contents in the system at a
given time, number of persons, number of passengers among
the persons, number of possible topics and locations. For the
semantic part of the analyser, (RDF and OWL files, SWRL
rules, inference) several tools have been used: OWLAPI (v.
4.2.7), SWRLAPI (v. 2.0.0), Drools engine (v. 6.5.0) and JFact
reasoner (v. 4.0.4). For the graph grammar based part, the
AGG engine (v. 2.1) has been used for the transformation of
the graphs (RFC) generated by the analyser. The measurements
were made using a Ubuntu server (Intel Xeon CPU (3 Ghz),
32 GB of RAM, OpenJDK version 1.8).

The considered deployment handles a bus at once and its
passengers. In this context, various number of passengers are
considered and the system has to decide which content to
display in the bus or to send it individually to the targeted
entities. For each input, the interests of each person are ran-
domly established. The related topics of interest and locations
to each content are attributed randomly too.

The experiments were conducted with various number of
passengers (10 to 60), various amount of contents to broadcast
(10 to 100) and possible topics of interest are variable (10 to
100). The number of considered interesting locations is fixed
to 25. The different results of the experiments are shown in
Figure 6. The average response time is presented with respect
to the number of passengers in the system (with a fixed number
of topics).

The response time for the semantic inference is shown in
hatched grey. The response time for the graph part (genera-
tion of the RFC graph to transform and transformation time
cumulated) is shown in black.

Fig. 6. Average response time in function of number of passengers for several
number of contents (10 / 50 / 100)

Regarding the response time of the semantic part, several
points can be highlighted. First, it takes globally more time
when more contents are considered. This is explained by the

complexity to handle and to determine which content should
be sent to which entity.

On the other hand, regarding the response time of the graph
part shown in Figure 6, it increases relatively to the number
of entities to handle (here passengers). Indeed, for a given set
of contents and linked topics of interest, when the number of
passengers of the bus increases, the response time of the graph
transformation increases up to 2 seconds with 100 contents to
diffuse. This is due to the necessity to aggregate more contents
together as there may be more persons interested in the same
kind of contents which is done by repeating one rule.

The worst case in Figure 6 takes up to 3,5 seconds to be
executed with 60 passengers and 100 contents to broadcast. In
this case, around 5340 axioms are considered in the ontology
and the RFC graph to transform contains 500 elements. How-
ever, in a real use case, such numbers should not be reached:
broadcasting more than 50 contents at once on a display device
would completely saturate the users of information and could
not fit easily in one screen.

It is worth noting that a decentralised deployment may suit
our use case in terms of response time. Indeed, an important
point to highlight here is that the number of content and topics
used for the measurements are considered at once, in one and
only one loop of the autonomic manager. The more contents
and persons the system handles at once, even regarding to one
bus, the longer the response time will be.

VII. RELATED WORKS & DISCUSSION

The IoT brings opportunities, but also challenges and con-
cerns. This paper focuses on the autonomic management of
IoT based systems. In this context, a semantic and formal
grammar graph based approach is proposed. The planner of the
autonomic system manager presented in this paper provides
an execution plan which enables building new value added
complex services through the composition of elementary IoT
services. The composition of services has been widely studied
in the literature.

The first important aspect many works focus on is providing
composition methods and algorithms to automatically generate
the composition plan based on a pre-established abstract
workflow of services and given set of known services. [15],
[16] and [17] studied several contributions in this field. They
gather several works based on AI algorithms or particular
calculation and planning techniques to compute an orches-
tration plan based on the given set of services and the target
abstract workflow. Also, they present some works that aim at
producing a composition based on semantic enrichment for
the description of the services (e.g., WSDL).

Considering a predefined workflow, some works perform
classification or clustering of services [18] [19], or guarantee
a single Quality of Service (QoS) parameter with inputs and
outputs characterization [20].

Finally, another important aspect of service composition
remains in service selection: it is the process of selecting the
best services to perform a given composition plan (i.e., given
abstract workflow) according to different parameters. In [4]

Guidara et al. propose a dynamic selection approach for the
composition of services: the goal is to fulfil dynamic selection
actions to avoid changes and faults during execution of a pre-
established plan. In [21], Raj et al. propose another approach
to perform service selection based on QoS parameters.

Most of the aforementioned works assume that the abstract
definition of the composition is known in advance through a
definition of abstract workflow. This assumption can be restric-
tive in several domains such as in the smart cities where user
requirements cannot be specified in advance as precise abstract
workflow that match existing services. However, in this paper
we do not assume that the description of the plan is already
given. In this work, the aim is for the manager to automat-
ically generate the plan according to expressed requirements
and then execute it on the fly. Moreover, those approaches,
particularly service composition selection approaches, could
be integrated in the execution phase to enrich our approach
to find the “best” services composition. Indeed, the selection
algorithms would be an enhancement for the execution phase
including dynamic selection mechanisms based on the set of
services provided in the execution plan. Indeed, for now the
service selection remains arbitrary in the execution phase.

VIII. CONCLUSION

In this paper, we presented a service oriented autonomic
management approach for IoT systems. This framework relies
on a semantic and graph transformation based approach. It is
composed of three main elements: the underlying IoT system
to manage, the autonomic manager which is based on the
MAPE-K paradigm, and the knowledge base which is defined
on top of semantic and graph grammar based models.

The proposed approach enables IoT systems to cope with
the dynamic and versatile nature of these systems and their en-
vironments by enforcing autonomic management actions while
guaranteeing provisioning complex new value added services.
The analysis and planning steps which present the core of the
proposed work have been implemented and evaluated using
a decentralized deployment. Also, a first full prototype in
the context of smart city with connected vehicles has been
deployed and validated.

As stated in the evaluation section, the proposed approach
is suitable to handle particular problem classes such as the
presented use case. We plan in our future work to study in
depth the scalability of the proposed approach to handle larger
scale systems and the possibilities of various deployments to
cope with it. Another important direction of our future work
is to integrate non-functional properties (Quality of Service,
energy, etc.) in the decision making but also in the service
management phase.

ACKNOWLEDGEMENTS

This work has been co-funded by a FEDER-FSE 2014-2020
fund of the Région Midi-Pyrénées & the European Union and
French Government (program: investment for future) in the
project: Smart Services for Connected vehiCles - S2C2.

REFERENCES

[1] A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, and M. Mo-
hammadi, “Toward better horizontal integration among IoT services,”
Communications Magazine, IEEE, vol. 53, no. 9, pp. 72–79, 2015.

[2] F. Aı̈ssaoui, G. Garzone, and N. Seydoux, “Providing Interoperability
for Autonomic Control of Connected Devices,” in Interoperability, Safety
and Security in IoT. InterIoT 2016, SaSeIoT 2016. LNICST (N. Mitton,
H. Chaouchi, T. Noel, T. Watteyne, A. Gabillon, and P. Capolsini, eds.),
vol. 190, ch. InterIoT, pp. 33–40, Paris: Springer, Cham, 2017.

[3] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of Things for Smart Cities,” IEEE Internet of Things Journal, vol. 1,
no. 1, pp. 22–32, 2014.

[4] I. Guidara, I. Al Jaouhari, and N. Guermouche, “Dynamic Selection for
Service Composition Based on Temporal and QoS Constraints,” in 2016
IEEE International Conference on Services Computing (SCC), pp. 267–
274, IEEE, 6 2016.

[5] R. Aschoff and A. Zisman, “QoS-Driven Proactive Adaptation of Service
Composition,” in 9th International Conference, ICSOC 2011 (G. Kappel,
Z. Maamar, and H. R. Motahari-Nezhad, eds.), vol. 7084, (Paphos,
Cyprus), pp. 421–435, Springer, Berlin, Heidelberg, 2011.

[6] R. Ramacher and L. Monch, “Reliable Service Reconfiguration for
Time-Critical Service Compositions,” in 2013 IEEE International Con-
ference on Services Computing, pp. 184–191, IEEE, 6 2013.

[7] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, pp. 41–50, 1 2003.

[8] N. Delgado, A. Gates, and S. Roach, “A taxonomy and catalog of
runtime software-fault monitoring tools,” IEEE Transactions on Software
Engineering, vol. 30, pp. 859–872, 12 2004.

[9] M. Palacios, J. Garcı́a-Fanjul, and J. Tuya, “Testing in Service Oriented
Architectures with dynamic binding: A mapping study,” Information and
Software Technology, vol. 53, pp. 171–189, 3 2011.

[10] A. Mosincat and W. Binder, “Automated maintenance of service compo-
sitions with SLA violation detection and dynamic binding,” International
Journal on Software Tools for Technology Transfer, vol. 13, pp. 167–
179, 4 2011.

[11] N. Seydoux, K. Drira, N. Hernandez, and T. Monteil, “Iot-O, a core-
domain IoT ontology to represent connected devices networks,” in
Knowledge Engineering and Knowledge Management. EKAW 2016.
LNCS (E. Blomqvist, P. Ciancarini, F. Poggi, and F. Vitali, eds.),
vol. 10024 LNAI, pp. 561–576, Springer, Cham, 11 2016.

[12] G. Rozenberg and H. Ehrig, Handbook of graph grammars and com-
puting by graph transformation, vol. 1. World Scientific, 1997.

[13] I. Horrocks, P. F. Patel-schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, “SWRL : A Semantic Web Rule Language Combining OWL
and RuleML,” W3C Member submission 21, no. May 2004, pp. 1–20,
2004.

[14] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, and A. Wagner,
“Algebraic Approaches to Graph Transformation: Part II: Single Pushout
Approach and Comparison with Double Pushout Approach,” Handbook
of graph grammars and computing by graph transformation, pp. 247 –
312, 1997.

[15] K. S. M. Chan, J. Bishop, and L. Baresi, “Survey and comparison of
planning techniques for web services composition,” Africa, no. October,
pp. 43–54, 2007.

[16] M. Aljawarneh, L. D. Dhomeja, and Y. A. Malkani, “Context-aware
Service Composition of Heterogeneous Services in Pervasive Computing
Environments : A Review,” no. 1, pp. 0–5, 2016.

[17] D. Hutchison and J. C. Mitchell, Semantic Web Services and Web
Process Composition, vol. 3387 of Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.

[18] Z.-z. Liu, D.-h. Chu, Z.-p. Jia, J.-q. Shen, and L. Wang, “Two-stage
approach for reliable dynamic Web service composition,” Knowledge-
Based Systems, vol. 97, pp. 123–143, 4 2016.

[19] R. A. H. M. Rupasingha, I. Paik, and B. T. G. S. Kumara, “Domain-
aware Web Service Clustering based on Ontology Generation by Text
Mining,” 2016.

[20] S. Chattopadhyay, A. Banerjee, and N. Banerjee, “A Scalable and
Approximate Mechanism for Web Service Composition,” Proceedings
- 2015 IEEE International Conference on Web Services, ICWS 2015,
vol. 11, no. 4, pp. 9–16, 2015.

[21] R. J. R. Raj and T. Sasipraba, “Web service selection based on QoS
Constraints,” Trendz in Information Sciences & Computing (TISC), 2010,
vol. 6, pp. 156–162, 2010.

