PEDOT-modified electrochemical microsensors: a versatile probe for the detection of antioxidant biomarkers

Fadhila Sékli Belaïdi, Aurélie Cивélas, Aliki Tsopela, Laurent Mazenq, Jérôme Launay, Pierre Temple-Boyer

To cite this version:

Fadhila Sékli Belaïdi, Aurélie Cивélas, Aliki Tsopela, Laurent Mazenq, Jérôme Launay, et al.. PEDOT-modified electrochemical microsensors: a versatile probe for the detection of antioxidant biomarkers. 13th world congress on biosensors, BIOSENSORS 2014, May 2014, Melbourne, Australia. 2014. <hal-01874795>

HAL Id: hal-01874795
https://hal.laas.fr/hal-01874795
Submitted on 25 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PEDOT-modified electrochemical microsensors: a versatile probe for the detection of antioxidant biomarkers

F. Sekli Belaïdi 1,2, A. Civélas 1,2, A. Tsopela 1,2, L. Mazein 1,2, J. Launay 1,2, P. Temple-Boyer 1,2

1 LAAS ; CNRS ; 7 avenue du Colonel Roche ; F-31077 Toulouse ; France
2 Université de Toulouse ; UPS, INSA, INP, ISAE, UT1, UTM ; LAAS ; F- 31077 Toulouse, France

Introduction

During the last two decades, the area of electrochemical sensors has greatly benefited from the development on nanotechnology in term of sensors design, fabrication and performances. This is particularly true in electrochemical analysis and biosensing thanks to the advantages of microelectrodes such as high sensitivity, fast response, easy integration, mass fabrication and low production cost. In this context, electrochemical sensors present an interesting alternative for the detection of ascorbic acid, dopamine and uric acid which are considered as important biochemical makers in different pathologies. This explains the numerous methods developed for their detection. Thus, our attention has been focused on the electrodeposition of poly(3,4-ethylenedioxythiophene) PEDOT on (Au-Pt-Ag/AuCl) microdevices for the simultaneous assay of ascorbic acid, dopamine and uric acid in biological samples.

Fabrication of integrated electrochemical microcells (ElecCell)

Thermal oxidation of the silicon substrate

T/Pt metallization (lift-off)

Ag metallization (lift-off)

Si₃N₄ passivation (lift-off)

Ag chlorination

Functionalization and analytical performances of ElecCell microdevices

I. PEDOT film electrodeposition

Cyclic voltammograms (CV) obtained for 50 μm diameter Au microelectrode in 0.1 M TRAPC - acetonitrile containing EDOT 2.5 mM (ι = 250 mV/s) and detail of the (Au/PEDOT – Pt - Ag/AuCl) ElecCell microdevices

II. Effect of electrode material

Differential pulse voltammograms (DPV) of (Au/PEDOT – Pt - Ag/AuCl) (black line) and (Pt/PEDOT – Pt - Ag/AuCl) (blue line) ElecCell in 0.1 M PBS pH 7.0 solution containing equimolar AA/Dop/UA (1 mmol.L⁻¹) PEDOT electrodeposited in acetonitrile solution (black line) or in aqueous solution (blue line)

- Electrolysis conditions determine the structure and catalytic properties of the resulting PEDOT polymer⁽¹⁾:
 - The morphology of PEDOT depends on the electrode materials and the solvent of the electrolytic medium
 - PEDOT upon gold electrode is more homogeneous than over platinum electrode⁽²⁾.
 - Regular polymer network improve both the cohesion and the conductivity of the polymer⁽³⁾.
 - Electropolymerization of PEDOT in aqueous solution has deleterious consequences on the polymerization reactions⁽⁴⁾ and the conjugation length and the conductivity of the polymer⁽⁵⁾.

III. Effect of solvent nature

Differential pulse voltammograms (DPV) of (Au/PEDOT – Pt - Ag/AuCl) ElecCell in 0.1 M PBS pH 7.0 solution containing equimolar AA/Dop/UA (1 mmol.L⁻¹) PEDOT electrodeposited in acetonitrile solution (black line) or in aqueous solution (blue line)

IV. Analytical performances

Differential pulse voltammograms (DPV) of (Au/PEDOT – Pt - Ag/AuCl) ElecCell in 0.1 M PBS pH = 7.0 containing different concentrations of AA,Dop,UA and corresponding calibration curves

Peak potential (mV/SCE)	Sensitivity (µA.µM⁻¹.cm⁻²)	Limit of detection (µM)	Linear range (µM)
Ascorbic acid | -50 | 0.85 | 0.2 | 0.5 - 300
Dopamine | 150 | 1.65 | 0.1 | 0.2 - 300
Uric acid | 280 | 3.06 | 0.05 | 0.1 - 300

References

Conclusion

Functionalization of gold microelectrodes by mean of PEDOT films exhibits electrocatalytic behaviour for ascorbic acid, dopamine and uric acid detection. Parameters of electropolymerization have been optimized to improve the morphological and electrocatalytic properties of the PEDOT polymer. The resulting (Au/PEDOT – Pt / Ag/AuCl) electrochemical microsensors (ElecCell) can be considered as a convenient probe for the simultaneous detection of ascorbic acid, dopamine and uric acid in different analytical fields.