N

N

IDE-OM2M: A framework for the development of IoT

applications using the OM2M platform
Karima Khadir, Thierry Monteil, Samir Medjiah

» To cite this version:

Karima Khadir, Thierry Monteil, Samir Medjiah. IDE-OM2M: A framework for the development of
IoT applications using the OM2M platform. 19th International Conference on Internet Computing and
Internet of Things (ICOMP’ 18), Jul 2018, Las Vegas, NV, United States. pp.76-82. hal-01874998

HAL Id: hal-01874998
https://laas.hal.science/hal-01874998
Submitted on 11 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://laas.hal.science/hal-01874998
https://hal.archives-ouvertes.fr

IDE-OM2M: A framework for the development of
IoT applications using the OM2M platform

Karima Khadir, Thierry Monteil and Samir Medjiah

LAAS-CNRS, Universit de Toulouse, CNRS, INSA, UPS, Toulouse, France.
Email: {kkhadir, medjiah, monteil} @laas.fr

Abstract— The Internet of Things (IoT) has emerged strongly in
recent years thanks to the proliferation of wireless communication
devices and networks. It has spawned an explosion of new
uses and services such as supply chain management, property
and person monitoring, residential or business home automation,
etc. However, several challenges must be overcome in order to
develop IoT applications such as interoperability and interaction
with and between different connected objects. In this paper, we
propose a high-level Integrated Development Environment (IDE)
that provides end-to-end solution for writing and deploying IoT
applications. This IDE uses the Node-RED graphical environment
to interact with the OM2M standard which serves as a middle-ware
between our Node-RED module and the various heterogeneous
devices. It also offers semantic support for an intuitive interaction
with these devices.

Index Terms—IoT, Node-RED, OM2M, oneM2M standard,
semantic.

INTRODUCTION

The Internet of Things is a concept newly emerged in the
jargon of new technologies. It touches almost all the domains
in a very sensitive way making possible the interconnection
of multiple heterogeneous objects (sensors, actuators, smart-
phones, etc). The frequent and intensive use of these connected
objects in daily life gave rise to the emergence of several
tools and languages for the development of IoT applications.
However, several challenges such as: heterogeneity, collecting
information from sensors, extracting useful data and selecting
devices participating in the application to be developed must
be overcome before implementing an end-to-end system for
the realization of innovative IoT applications both intuitively
and flexibly.

In this article, we will cite some tools and methodologies
for the development of IoT applications, ranging from meth-
ods based on traditional programming languages as JAVA,
which require a lot of technical knowledge and arriving at
Mashup tools such as: COMPOSE, WoTKit, ThingWorx and
Node-RED, which allow a visual and interactive modeling
of data flows exchanged between connected objects. Next,
we describe in detail our system, which aims to offer an
Integrated Development Environment for the development of
IoT applications through a visual approach hiding all technical
difficulties involved in the implementation of this type of appli-
cations. Our system is characterized by an innovative end-to-
end architecture based on our OM2M platform implementing
the global standards SmartM2M and oneM2M to address the

problem of heterogeneity, discovery approaches based on the
abstract names of sensors and actuators, Labels describing
these devices and even an approach based on semantics. The
end of this architecture on the user side is determined by
a set of Node-RED nodes allowing the user to create his
applications easily by dragging and dropping these nodes.
Then, we compare our solution with the aforementioned tools
to extract the strong points that characterize it. Finally, to
demonstrate the value of our system and evaluate the benefits
of using the various provided nodes, we propose a scenario
for creating IoT applications easily within the ADREAM
intelligent building.

I. STATE OF THE ART

There are several works in the literature that are focused on
the problem of developing IoT applications, we present in this
section some tools and specific languages.

A. Eclipse loT

Eclipse IoT [1] is a set of frameworks and open source
technologies as well as a wide range of APIs (RESTful
Application Programming Interface) to enable Java developers
to implement IoT solutions casily. Among them we find the
Open IoT Stack for JAVA that gathers JAVA components and
OSGI (Open Services Gateway initiative) services. However,
the user must overcome some standards such as MQTT and
CoAP as well as technical knowledge allowing the interaction
with the devices, the discovery of the services they expose,
etc.

B. PyoT

PyoT [2] is an IOT application programming tool that can

manipulate the various sensors and actuators represented as
virtual CoAP resources and exposed via RESTful interfaces.
It is based on the Python language.
The users can create their applications using a set of pre-
defined functions grouped in the Python API to retrieve the
list of resources (get_actuator_list()), to retrieve data from a
sensor (get_setpoint()), or to send commands to the actuators
(set_actuator()). A wide range of IoT applications can be
created by using these functions combined with notions of
traditional programming such as loops and conditions.



C. Reactive Blocks

Reactive Blocks [3] is a tool based on the model-driven
development model dedicated to the development of event and
simultaneous applications. It uses both JAVA programming and
UML modeling where the user can program his own blocks
or use pre-existing blocks and then interconnect them.
UML’s role is to coordinate the behavior of blocks in the form
of activity diagrams or state machines. For JAVA, it is used
to implement the operations performed by the block. Once
the application consisting of several blocks is built, it will be
analyzed automatically and finally generate code in the form
of OSGI packets or JAVA applications.

D. IoT-MAP

[oT-MAP [4] is an [oT Mashup Application Platform that

enables mobile devices to interact with intelligent objects in a
flexible and abstract way, and which facilitates the implemen-
tation of mobile IoT applications by offering a set of intuitive
APIs. These APIs contain functions for devices discovery,
retrieval of services offered by them and their abstract use
as a real objects.
The manufacturers of connected objects use name servers
based on the ONS (Object Name Service) and the bundle
of drivers bundles to facilitate the discovery of devices by
end users. These latter can then choose which drivers will
participate in the desired service or create it using a tool
provided by the platform. Finally, they build the desired
application by gathering the services chosen and the logical
modules allowing their interoperability. The platform made
available to users of the generalized functional abstraction
interfaces via the IoT-App API for the development of their
applications using the Plain Old JAVA Object (POJO) style.

E. BETaaS

BETaaS [3] is a platform dedicated to the execution of

distributed applications that runs on gateways to which objects
are connected. This platform exposes the contents of connected
objects as an interface called Things-as-a-Service (TaaS) inde-
pendently of the technologies on which the sensors/actuators
are based or their locations. Therefore, it reduces the execution
time and complexity of code development of IoT applications
that can also be reused.
It is a modular platform based on layered architecture to enable
the integration of existing M2M technologies by using plugins
that provide a common interface for access to the functionality
offered by M2M systems. It also gives developers the ability
to develop new services and applications and deploy them on
the service layer.

F. ThingWorx

ThingWorx [5] [6] is a complete platform for the design
and execution of end-to-end IoT applications. Thanks to
ThingWorx [3] Composer, it allows to model the components
required by the application to be developed, such as devices
and business logic. It also provides developers with a drag-
and-drop tool called Mashup Builder to create IoT applications

using platform data via a user-friendly interface and supports
multiple protocols, cloud services, and social services.

G. COMPOSE

COMPOSE [7] is a platform as a service that provides a
complete infrastructure for developing end-to-end IoT applica-
tions that intelligently detect or interact with physical devices
and external information resources. It uses Node.js to create
the flows describing these applications via Node-RED.

It also provides a set of tools (SDK, IDE, etc.) that allow
the user to discover the existing services in the platform,
compose them to create new applications and store them in
the COMPOSE infrastructure. This platform integrates Web
2.0 based communication technologies and M2M protocols
such as CoAP and MQTT.

Compose implements a data storage and exposure framework
called servloTicy. The latter makes it possible to interact with
the user applications and the connected objects to store their
data. The end users can retrieve this data and be notified in
the event that new measurements are produced.

It offers a web interface available at http://www.gluethings.
com that allow to create a virtual intelligent object on the
servloTicy platform, to test the deployment of the applications
and to receive their data in real time. COMPOSE uses the
IServe service warehouse to unify the publication of these ser-
vices and their discovery. The latter functionality is achieved
by using the IServe API and requests to provide a list of
available services or software components to be used in the
application to be developed.

H. WoTKit Processor

WoTKit Processor [8] is a data flow-based system imple-

mented using JAVA. It provides a graphical tool to process the
data from the different sensors and react in real time according
to the received data.
It allows to create a set of interconnected modules called
pipes managed by a secure management Web page that restrict
access to the user concerned in the platform. Once the user
executes his pipe, the system compiles the different modules
to verify them, then instantiates them on the server and fills
a routing table describing the existing interconnections within
the pipe. Thereafter the input modules can connect to external
systems such as WoTKit sensor aggregation platforms or
subscribe to data streams to receive real-time notifications.

1. Node-RED

Node-RED [8] ! is open source software on GitHub, under
the Apache 2 license, developed by the IBM community. It is
a tool for building IoT applications in a simple way using a
visual drag-and-drop approach that allows developers to wire
predefined or self-developed code blocks called nodes to create
flows that perform a specific task (processing data, controlling
devices, or even sending alerts, etc).

This graphical environment works as a Web server. It allows
users to create and manipulate their IoT applications via

Thttps://nodered.org/



cabling of hardware devices, APIs, and Web services from
a Web or Mobile browser, local or remote, as part of the
Internet of Things. It is built on Node.js which makes it ideal
for running on restricted objects with limited capacity like
Raspberry Pi.

Node-RED provides a flow editor that consists of three panels
basically:

=< Node-RED

=/~ Deploy ~

a Flow 1 Flow 2 | S info debug

~ input Node

Type inject

D f84d7115.26cTe
» Properties
Pressing

the node message on a topic
to be injected into the flow.

on the left side of

timestamp |~ '5"
mgtt : The payload defaults to the current
time in millisecs since 1970, but can
htp also be set to various other javascript
types.
websocket

4 The repeat function allows the

Fig. 1: Node-RED Stream Editor

1) Node Panel: contains a list of nodes that will be used
by the user to create their feeds. Each node belongs to a
specific category depending on the functionality it offers.

2) Flux panel: This is the main work area of the user where
he can create his flows by dragging and dropping nodes
from the first panel.

3) Information and debug panel: it consists of two tabs:

a) An info tab: has the role to display the information
related to a given node (its type, its properties, the
features it provides, etc).

b) A debug tab: allows users to view the results and out-
puts of the deployed flows and the errors encountered
during execution.

II. IDE-OM2M

Our contribution is the development of a new Node-RED

module that use the services offered by the OM2M platform
to build useful IoT applications in a simple and fast way.
In this section, we begin by presenting the proposed end-to-
end architecture, and then we explain the role of each part of
this architecture by addressing the OM2M platform and the
different nodes of our IDE-OM2M module.

A. Physical architecture

the figure 2 illustrates the physical architecture on which our
IDE is based. This architecture includes a set of devices based
on heterogeneous technologies from different brands, linked
to several gateways that are connected and registered with a
server that gives access to the system. IDE-OM2M interacts
with this server to retrieve the data generated by the sensors
to obtain the various measurements produced by the sensors
such as, for example, the temperature of a room or/and act
on the actuators for effecting Changes to the environment by
sending specific commands to the relevant actuators according
to the specific conditions in the context of IoT applications.

R
.~ No;-R-l-;J / g

@

Li iIiI

Node-red-contrib-IDE-0M2ZM Liwe ]

-—>
1\_\‘.
Fig. 2: Physical architecture of IDE-OM2M

1) OM2M: Eclipse OM2M 2 [9] is an open source project
developed by by ourselves in LAAS-CNRS and distributed by
the Eclipse foundation. It has created a standardized horizontal
M2M services platform that implements ETSI SmartM2M and
oneM2M standards.

OM2M aims to reduce the complexity of the development
process of vertical M2M applications that can work on a wide
range of devices, protocols and networks to facilitate their
deployment. To do this, a horizontal service layer (Common
Service Entity (CSE)) is introduced between the network layer
and the application layer. This layer can be deployed on the
network server, gateways and devices to enable the M2M
interoperability in terms of communication and data exchange
between the various heterogeneous devices, which will allow
a large-scale deployment of M2M.

This platform is composed of a set of JAVA services defined
as an Eclipse product using Maven and Tycho running on
an OSGi (Open Services Gateway Initiative) platform which
makes it highly extensible via plugins. These services are
implemented independently of the network and the underlying
hardware layer and are exposed through a RESTful API in the
form of identifiable resources and accessible in a unique way
via URIs (Uniform Resource Identify) specific [10].

These resources can be manipulated via HTTP queries
(GET, POST, etc.) which can be very useful for providing
IoT applications easily.

Several types of resources exist, of which we quote:

1- The AE resource: which is used to represent an application
of an IoT device registered with OM2M in order to be able
to manipulate it, for example a temperature sensor.

2- The Container resource: this is a data buffer. It must be
created under a given AE resource, two types of Container
resources are possible:

- A Descriptive Container: to contain Content Instances

that describe the application concerned.

- A Data Container: to contain Content Instances contain-

ing the data of the application.
3- The Content Instance resource: represents an instance of
data in the Container resource. These instances of data will be

Zhttp://www.eclipse.org/om2m/



retrieved by our system to extract the value of certain attributes
such as the state of a given device (off/on) or the level of
luminosity in a room for example.

4- The Subscription resource: to allow subscribers to receive
notifications during a new event on the resource to which they
subscribed.

Thanks to the OM2M platform, communication interoper-
ability has been achieved, allowing automatic discovery of
connected devices, notification of subscribers to the arrival of
new cvents and efficient routing involving various protocols
and network technologies. However, applications did not have
the ability to understand the meaning of content exchanged
between devices without human intervention. For this, an
expressive ontology for IoT called Io7-O (IoT Ontology) [11]
is proposed taking full advantage of ontologies already defined
in other domains such as sensors, observation, service, type of
quantity, units, or time.

To integrate semantics into OM2M operations, two options are
available:

- An “ontologyRef” attribute: which contains a unique
reference that describes the semantic meaning of the
resource. It can be used to find a specific resource based
on a semantic concept. But this option is very limited
because it does not provide any semantic meda-data on
the relationships that the concept possesses.

- A new ”SemanticDescriptor” sub-resource: which con-
tains a complete semantic description of the resource de-
fined using the RDF (Resource Description Framework)
triplet. It is exposed and shared between the different
applications.

2) IDE-OM2M: IDE-OM2M uses three approaches:

- The first uses the names of the applications offered by
the devices as stored in the OM2M resources tree.

- The second solicits various actuators and sensors using
a list of labels describing these objects, for example:
Type/sensor, Category/temperature, Location/home, etc.

- The third one is a semantic approach that simplifies the
designation of the devices using a language close to the
natural human language via SPARQL (SPARQL Protocol
and RDF Query Language) queries. This approach also
avoids system reconfiguration problems when another
that performs the same function replaces one device.

Our module includes a set of Node-RED nodes interacting
with the resources mentioned above via REST calls. We shall
cite in the following the list of nodes that compose it: -
OM2MEntity node: allows the user to enter the parameters
(URL, login, etc) describing the OM2M platform requested
in a global way. The user can also use objects connected to
different OM2M platforms using multiple OM2MEntity nodes.
- Discovery node: lists the devices connected to the OM2M
platform designated by the user.

- Sensor: implements the methods used to retrieve the mea-
surements produced by the various sensors recorded on an
OM2M platform described by an OM2MEntity node (luminos-
ity level and temperature). It uses the HTTP protocol to send

its GET request as well as JSON (JavaScript Object Notation)
as an exchange format between this module and the OM2M
standard.

- NotificationsHandler node: implements an HTTP server
that allows the user to receive notifications when a change
occurs in an OM2M resource to which he subscribed via the
Subscription node. It also enables him to retrieve the new state
of this resource after the update.

- Actuator node: implements methods for sending simple
commands to actuators to act on the state of a device (Off/On)
or to modify the value of some measures of a given device,
such as temperature.

III. FEATURES AND BENEFITS

Several works, which aimed to simplify the development
of IoT applications have been proposed, but most of these
solutions focus on particular problems (devices discovery, in-
teroperability, etc) and require technical skills and knowledge
in the field of IoT. Hence, the need for the implementation
of an end-to-end, high-level solution that provides syntactic
and semantic interoperability of communications with/among
devices and that abstracts the various concepts required in the
development of [oT applications.

The table I lists the different tools mentioned in this article
by comparing them and our IDE-OM2M module according
to some fundamental characteristics to meet the expectations
of the developers of IoT applications such as: architecture,
service discovery, semantics, etc. Through this table, it is clear
that IDE-OM2M provides more advantage over other tools in
terms of decentralization of its architecture, the discovery of
appropriate services and the use of semantics.

The main features of IDE-OM2M are:

1 Syntactic and semantic interoperability: we used the
OM2M standard as a syntactic and semantic middle-ware
to deal with the problem of the horizontal fragmentation
of the IoT market and allow users to interact with their
devices with a language close to natural language.

2 Distributed applications: the devices included in the IoT
application to be developed can be connected to different
OM2M platforms (different servers).

3 A drag-and-drop graphical environment: thanks to Node-
RED, we were able to set up a set of nodes that the
user will need to develop their own applications easily.
He only has to take these nodes, introduce the necessary
information for their operation via simple and explicit
forms and connect these nodes by arcs which serve
as channels for the transport of data flows exchanged
between them.



Model Type Service Architecture REST | Open Support  for | Semantic
discovery source heterogeneity

Java Textual - - - - - - -
PyoT Textual - - - - - - -
Reactive Mashup | Server | No Cloud service | No Yes Yes No
Blocks
[oT-MAP Mashup | Server | Yes Cloud-based No Yes Yes No
BETaaS Mashup | TaaS Yes Cloud-based No Yes Yes No
ThingWorx | Mashup | PaaS Yes Cloud-based Yes No Yes No
COMPOSE | Mashup | PaaS Yes Cloud-based Yes Yes Yes No
WoTKit Mashup | PaaS Yes Cloud-based Yes No Yes No
Processor
Node-RED Mashup | Server | No Centralized No Yes Yes No
IDE-OM2M | Mashup | Server | Yes Decentralized | Yes Yes Yes Yes

TABLE I: Some available IoT tools

4 Devices discovering: to identify the sensors producing
useful measurements that must be used by the IoT
application to be developed and the actuators on which
it is necessary to act to change the state of a device or
a property of the environment, we have implemented
nodes that allow the users to designate these devices.
The users can do that either by using their exact names
if they are known by them, by keywords such as the
location and category that characterize them or by using
a SPARQL request that allows an abstraction of high
level for the discovery of these objects.

5 Data processing:  after receiving the data instances
produced by the sensors of the OM2M platform, the
user can retrieve the value of a given property.

6 Subscription to sensor data: the user can subscribe
to specific sensors to receive notifications in real time
when new measurements are produced while retrieving
the data. The user can trigger his applications either
manually or on specific dates or at well-defined time
intervals and thanks to this functionality, processing can
be started as soon as new sensors data are received.

7 Application of simple conditions: the user can apply
simple or complex conditions to the data received from
the sensors in order to make intelligent decisions about
his environment.

IV. EXAMPLES OF APPLICATION

In this section, we will begin by presenting the ADREAM
building on which we will carry out our experiments. After
wards, we will illustrate the functionalities offered by our
module through real use cases.

A. Intelligent Building ADREAM

The ADREAM project (Reconfigurable Dynamic Archi-
tecture for Autonomous Mobile Embedded Systems) is an
experimental research support funded by the European Union
and the Midi-Pyrenees region.

It is inaugurated by the LAAS-CNRS in 2012. This program
is devoted to energy optimization and ambient intelligence
including various heterogeneous objects such as: vehicles,
clothing, buildings, etc.

It includes an intelligent building capable of linking the virtual
world of computing to the real world of physical objects. It is
carried out by a multitude of sensors (temperature, presence,
humidity, etc.) used to evaluate the condition of the building
and the devices located there, and several actuators acting on
the condition of the building according to the needs of the
users. These devices are connected to two gateways, both are
also connected to a central server allowing access to the system
assembly.

To enable communication interoperability and integration of
existing technologies such as ZigBee and 6lowpan, M2M
gateways have a map module that translates them into a
generic protocol independent of the transport protocol or
network access.

B. Demonstration scenarios: Lights management

This scenario aims to optimize the energy consumption of
the scaling system within the ADREAM building. It ensures
a minimum brightness of 200 lux in case of presence of a
person. Our system must benefit from daylight by opening
the shutters. If the brightness outside is too low, the lights
in the building should come on gradually according to their
energy consumption (starting with the lamp that consumes less
energy) until reaching the expected brightness level.

We give in the following a small abstract algorithm to facilitate
the understanding of the scenario.

1) If a presence is detected then:

a) Measure the brightness level inside the building via

inLuminositySensor
b) If the level of brightness is less than 200 lux then:

i) Measure the external brightness via outLuminosi-
tySensor
ii) if the external brightness is greater than 200 lux
then: open the shutters via the shutter_actuator.
iii) Else: as long as the brightness is less than 200 lux
and there is a lamp off:



A) choose the lamp that consumes the least energy
via a SPARQL discovery request.
B) Turn on the chosen lamp.
2) Else: turn off all lights and close the shutters of the
building
The presence detection is performed by the
notficationsHandler node which receives notifications directly
from the presence sensor to which the node subscribes. While
indoor and outdoor brightness is measured via LabeledSensor
nodes via simple keywords.
Regarding the discovery of the lamps that consumes the least
energy is achieved via the node SemanticSensor. The latter
offers flexibility and ease to discover the devices with specific
characteristics such as QoS attributes that can only be done
with semantics.The figure 3 shows the node-red workflow for
the chosen scenario

o

switch <G delay 15 >
delay1s \?;

Fig. 3: Light management scenario

In the following, an illustration of the configuration of the
most important nodes.

OM2MEntity: to name our platform by OM2M and specify
the URL of the gateway to which the devices are connected
as well as the login and the password.

Edit OM2MEntity node

~ node properties

% Platform OM2M

= URLBase http:/f127.0.0.1:8080/~/mn-cse/mn-name
& Usemame admin

& Password weee

% Name

Fig. 4: OM2MEntity node configuration

LabeledSensor: to discover an appropriate sensor to
measure the brightness inside the building via keywords.
With regard to external brightness, just put the label Loca-
tion/inADream.

Edit LabeledSensor node
Delete
~ node properties

% Platform omM2M

% Container DATA

Bm Content

Instance Oldest v

ELabels

Label Walue

Type sensor

Category luminosity

Location inAdream

*

Fig. 5: LabeledSensor node configuration

SemanticActuator: to write a SPARQL query that searches
for the lamp that consumes the least energy and is not lit to
light it.

Edit SemanticActuator node

Delete Cance

~ node properties

®¥Platform oM2M
€21 SPARGL
SELECT * WHERE {

?resource <http/fpurl.oclc.org/NET/ssnx/ssngobserves>
<http:/lexample.org/nstLuminosity=.

?resource <https:/fwww.irit.frirecherches/MELODI/ontologies/loT-O#PowerConsumption>
?energie.

?resource <https:/fwavw.irit.frirecherches/MELODI/ontologies/aT-O#State>
<http/lexample.org/ns#false>.

}

ORDER BY ASC(?energie) LIMIT 1

[Command op=seton

% Name |\ :

Fig. 6: semanticActuator node configuration

SemanticActuator: to turn off the lights on via a simple
SPARQL query.



Edit SemanticActuator node

Done

v node properties

R¥Platform ‘ om2M
£ SPARQL
SELECT * WHERE {
?resource <http:/ipurl.oclc.org/NET/ssnx/ssn#observes>

<http:/lexample.org/ns#Luminosity>
7resource <https:/iwaw.irit.frirecherches/MELODl/ontologies/loT-O#State>
<http:/lexample.org/ns#true>.

[OCommand

op=setOff

Fig. 7: semanticActuator node configuration

We see through this scenario the flexibility and simplicity
of our IDE to set up this small application by connecting a
set of nodes and configure them. it also shows the benefits of
using semantics for resource discovery (here to find the lamp.

V. CONCLUSION

In this article we present a high-level environment using
Node-RED which aims to provide the user with a graphical
tool for the development of IoT applications easily. It operates
the services offered by various IoT devices and exposed as
RESTHful resources in the OM2M platform to manipulate them
via HTTP operations (GET, POST, etc). In addition, this envi-
ronment integrates semantic support to provide an abstraction
in the identification of sensors and actuators involved in the
IoT applications to be developed.

In future work, we aim demonstrate more sophisticated
scenarios with large set of sensors and actuators. IDE-OM2M
will be published as a new open source IDE an eclipse OM2M
and a Node-RED repository.

We will also develop a partnership to extend this IDE specif-
ically with NCTU University.

[1]

[2]

[3]

[4]

REFERENCES

I. Eclipse. (2016) Open iot stack for java developers. https:
/liot.eclipse.org/java/ retrieved June 2017. [Online]. Available: https:
/liot.eclipse.org/java/

A. Azzar and L. Mottola, “Virtual resources for the internet of things,”
in 2015 IEEE 2nd World Forum on Internet of Things (WF-1oT), Dec
2015, pp. 245-250.

E. Baccelli and D. Raggett, The Internet of Things and The Web of
Things, ser. ERCIM News Special Issue on The Internet of Things and
The Web of Things. ERCIM, Apr. 2015, no. 101. [Online]. Available:
https://hal.inria.fr/hal-01244735

S. Heo, S. Woo, J. Im, and D. Kim, “Iot-map: Iot mashup application
platform for the flexible iot ecosystem,” in 2015 5th International
Conference on the Internet of Things (10T), Oct 2015, pp. 163-170.

[5]

[6]
[7]

[8]

[9]

[10]

(1]

Y. J. Heo, S. M. Oh, W. S. Chin, and J. W. Jang, “A lightweight plat-
form implementation for internet of things,” in 2015 3rd International
Conference on Future Internet of Things and Cloud, Aug 2015, pp.
526-531.

thingworx. (2016) thingworx. https://www.thingworx.com/ retrieved
June 2017. [Online]. Available: https://www.thingworx.com/

C. Doukas and F. Antonelli, “A full end-to-end platform as a service for
smart city applications,” in 2014 IEEE 10th International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob), Oct 2014, pp. 181-186.

M. Blackstock and R. Lea, “Toward a distributed data flow platform
for the web of things (distributed node-red),” in Proceedings of the
5th International Workshop on Web of Things, ser. WoT ’14. New
York, NY, USA: ACM, 2014, pp. 34-39. [Online]. Available:
http://doi.acm.org/10.1145/2684432.2684439

M. Ben-Alaya and al., “Om2m: Extensible etsi-compliant m2m service
platform with self-configuration capability,” Procedia Computer Science,
vol. 32, pp. 1079-1086, 2014.

Ptcek, Cackovic, and al., “Architecture and functionality in m2m stan-
dards,” in 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO),
2015, pp. 413-418.

N. Seydoux, K. Drira, N. Hernandez, and T. Monteil, IoT-O, a
Core-Domain IoT Ontology to Represent Connected Devices Networks.
Cham: Springer International Publishing, 2016, pp. 561-576. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-49004-5_36



