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Abstract:

This paper concerns the estimation of the sideslip dynamics of automotive vehicles in a
bounded-error framework. This work considers the linear varying parameter (LPV) model of an
automotive vehicle in a polytopic form. This model is obtained by considering the dependency
of the model with respect to the vehicle speed as a varying parameter.

Since this parameter belongs to a bounded interval (the vehicle speed is obviously bounded by
constructor constraints), interval analysis tools propose efficient approaches for estimating the
vehicle unmeasured dynamics in all situations. Indeed, in this paper, an estimation strategy is
developed to reconstruct the vehicle sideslip dynamical behaviour and then proceed to a stability
analysis of the car based on the driving situation.

Simulations performed on a nonlinear vehicle model and its parameters (validated by an
experimental procedure on a real Renault Megane Coupé) are used to validate the estimation

strategy and highlight its efficiency.

Keywords: Estimation, Interval analysis, linear varying parameter (LPV) modeling,

automotive systems, stability evaluation.

1. INTRODUCTION

In the last century, the automotive vehicle’s industry has
greatly evolved. Thanks to the significant technological
developments, new generations of safe, efficient and eco-
logical cars have been produced. This has led to an in-
creasing competition between several car companies by
continuously enhancing the performance of their products.
For this sake, both academic and industrial communities
have focused on proposing new strategies that enhance
the vehicle behaviour. One of the most challenging issues
to achieve this goal is the lack of informations about some
of the vehicle’s dynamics that can not be measured using
conventional sensors. These informations may be crucial to
evaluate the car’s state (stability, driving situation,...) and
to provide the adequate solutions (inputs to the control
and diagnosis strategies).

Recently, a lot of works have been developed in this scope.
In Gustafsson (1997), a strategy to estimate the vehicle
slip based on tire friction is presented. It allows to alarm
the driver for sudden changes. Another estimation strategy
based on Kalman filtering has presented a simple im-
plementable estimation for these dynamics in Venhovens
and Naab (1999). In Ono et al. (2003), an on-line least-
squares method was applied to wheel rotational velocities
to estimate the parameters of the tire frictions and then
the car’s slip. An identification approach based on road
type recognition is proposed in Guan et al. (2014). Other
strategies have already tried to provide solutions to the
considered issues (see Morrison and Cebon (2016); Du
et al. (2014); Gadola et al. (2014)).

All the previously cited strategies present some limita-
tions concerning the estimation of these non linear slip

dynamics. The correlation between the vertical, lateral and
longitudinal dynamics are very strong and make it very
difficult to isolate the variable to be estimated.

For this purpose, authors have considered using interval
state observers on a linear varying parameter model that
approximates efficiently the considered non linear phe-
nomenon. Indeed, an important framework which has been
largely investigated to solve the problems of estimation for
generic nonlinear systems is based on LPV transformations
(for example Lee (1997); Shamma and Xiong (1999)). In
Wang et al. (2012), interval observers are used to param-
eter estimate of nonlinear systems. There exist several
approaches to equivalently represent a nonlinear system
in a LPV form (for example Hecker and Varga (2004) or
Marcos and Balas (2004)). It is worth to note that such
a procedure is not based on approximate linearization.
It is global and it transforms the nonlinear system by
introducing extended parametric uncertainties to the LPV
setting. There are several methods for estimating LPV
systems, one of them is based on design of interval state
observers Rassi et al. (2012) which provide two variables
evaluating the lower and upper bounds for state values of
LPV systems.

In this paper, a state observer based on interval analysis is
used to estimate the sideslip dynamics of the automotive
vehicle. This estimation allows us to establish an adequate
analysis of the car’s stability while performing several
drinving scenarios. The proposed observers guarantee to
enclose the set of system states that is consistent with
the model, the disturbances and the measurement noise.
Moreover, it is only assumed that the measurement noise
and the disturbances are bounded without any additional
information such as stationarity, uncorrelation or type of



distribution. The proposed strategy is applied the LPV
model based on a non linear vehicle model validated by
an experimental test procedure on a real Renault Mégane
Coupé.

This paper is organised as follows: section 2 presents
the non linear model of the automotive vehicle and the
corresponding linear varying parameter model (LPV). In
section 3, the estimation strategy based on the interval
analysis state observer is presented. The next section
presents simulation results obtained on the full non linear
vehicle model validated on the real car. Finally, a conclu-
sion on the proposed strategy and validation discusses the
efficiency of the approach.

2. SYSTEM MODELING

In this section, a nonlinear model and its parameters
validated on a real vehicle (Renault Mégane Coupé) for
simulation and validation purposes is presented. Also, a
linearized model and a linear varying parameter (LPV)
model is proposed to cope with the estimation strategy
requirements.

2.1 The model parameters

In the following, the vehicle model parameters obtained
by an identification process on the real Renault Mégane
Coupé are presented. Throughout the paper, indexes i =
{f,r} and j = {I,r} are used to identify vehicle front, rear
and left, right positions, respectively.

Symbol  Value Unit Signification

m 1535 kg vehicle mass

I, 2149 kg.m?  vehicle yaw inertia

Cy 40000 N/rd  lateral tire front stiffness

Cr 40000 N/rd  lateral tire rear stiffness

S 12720 N longitudinal tire rear stiffness
Ly 1.4 m distance COG - front axle

Iy 1 m distance COG - rear axle

tr 1.4 m rear axle length

R 0.3 m tire radius

" (2/5;1] - tire/road contact friction coefficient
v [50;130] km/h  vehicle velocity coefficient

Table 1. Renault Mégane Coupé parameters.

2.2 The nonlinear model

A nonlinear full vehicle model has been validated by an
experimental procedure on a real car . In this paper, only
the nonlinear equations under interest that reproduce the
vehicle lateral behaviour are presented (the full vehicle
model with all the non linear equations describing its
dynamical behaviour can be found in Fergani (2014)). The
main equations that govern the lateral dynamics are the
following:

B = (Ftyf + Fiy,)/(mv) + ¢7
¢ = [lf(=Fray sin(6) + Fyy, cos(d)) =l Fy, , (1)
_AFtwrtT + Mdz] /127

where 3 is the sideslip angle and v is the vehicle yaw, F}, ;

E
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Fig. 1. View of the bicycle model.

represents lateral front tire forces, Fy, represents lateral
rear tire forces and Fj, , represent the longitudinal front
tire forces, v is the vehicle speed, AF},, is the differential
rear braking force (obtained based on the braking torques
Ty, ), 0 is the steering angle and M. is the yaw moment
disturbance.

Remark 2.1. Tt is worth noting that the sideslip dynamics
are highly nonlinear and cannot be measured via a con-
ventional sensor.

2.3 The linear bicycle model

Since the previously introduced model is highly non linear,
a linear bicycle model as illustrated by Fig. 1 reproducing
the lateral behaviour of the car is used for this study
by linearizing (1). The model is obtain considering the
following:

e Low sideslip angles: |5| < 7 degrees,
e Low longitudinal slip ratio: < 0.1,
e Low steering angles: cos(d) ~ 1.

The linearized lateral tire forces are:

Fyy, = Cypy,
: 2
{ FtyT = Crﬁm ( )

with 8y and 3, denote the front and rear sideslip angles,

57’:B+f .

v

This leads to the following state space representation (4):
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Remark 2.2. p € [0;1] is the tire/road adhesion coefficient.
Its value depends on the road conditions (dry, wet, icy,...)
and highly influences the lateral dynamics of the vehicle.
The influence of this parameter is shown in Fig. 2 (more

details in Poussot-Vassal (2008)):

Normalized longitudinal tire force

Fo/F. ()

Cobblestone

Fig. 2. Road adhesion influence on the tire and slip

dynamics .

2.4 The linear varying parameter model (LPV)

To cope with the estimation strategy and to have better
results, the model may have to be put in a linear varying
parameter form (LPV model). Indeed, the choice of the
varying parameter can be crucial for the strategy devel-
opment. A close examination of the model (4) shows a
dependency of the model w.r.t the vehicle speed v. This

can be noticed on the two graphs of Fig. 3.

In this paper, the varying parameter is not chosen to be
directly the speed v but % such that p; = % and ps = v%

The result is then a polytopic LPV model as follows:
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Fig. 3. Model dependency w.r.t vehicle speed.
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Remark 2.3. Since the selected varying parameter is the
inverse of the vehicle speed v which does not depend on
the state of the system, the resulting model is an LPV
model and not a qLPV (quasi LPV is not as relevant as
a total LPV model for a polytopic representation). Also,
the vehicle speed is obviously bounded which is sweetable
for this representation.

3. INTERVAL ANALYSIS ESTIMATION STRATEGY
3.1 Basic tools of interval analysis
A real interval [u] = [u, W] is a closed and connected subset
of R where w represents the lower bound of [u] and @
represents the upper bound.
The width of an interval [u] is defined by:

w(u)=u—u (6)

and its midpoint by:

m(u) = (U +w)/2

—
-
2

The set of all real intervals of R is denoted IR.

Two intervals [u] and [v] are equal if and only if u = v
and w = 7.

Real arithmetic operations are extended to intervals Moore
(1966). Arithmetic operations on two intervals [u] and [v]
can be defined by:

/% [ul o ] ={zoy |z €fu], y € [v]}. (8)

An interval vector (or box) [X] is a vector with interval
components and may equivently be seen as a cartesian
product of scalar intervals:

o€ {+,—,

[X] = [21] % [z2]n. X [2a]- 9)

The set of n—dimensional real interval vectors is denoted
by IR™.

An interval matrix is a matrix with interval components.
The set of n x m real interval matrices is denoted by
IR™*™. The width w(.) of an interval vector (or of an
interval matrix) is the maximum of the widths of its
interval components. The midpoint m(.) of an interval
vector (resp. an interval matrix) is a vector (resp. a matrix)
composed of the midpoint of its interval components.
Classical operations for interval vectors (resp. interval
matrices) are direct extensions of the same operations for
punctual vectors (resp. punctual matrices) Moore (1966).

Let f : R® — R™, the range of the function f over an
interval vector [u] is given by:
f(lul) ={f(@)|z € [u]}. (10)

The interval function [f] from IR™ to IR™ is an inclusion
function for f if:
V[u] € IR", f([ul) € [f1([u]). (11)

An inclusion function of f can be obtained by replacing

each occurrence of a real variable by its corresponding
interval and by replacing each standard function by its
interval evaluation.
Such a function is called the natural inclusion function. In
practice the inclusion function is not unique, it depends
on the syntax of f.

3.2 Bounded state Estimation

The following results were developed in Efimov et al.
(2013). Given an LPV system described by:

& = [Ao + 0A(p(t))]x + b(t)u, y = Cxz. (12)
Define by 2+ = max(z,0), 2~ = 2t — 2 and AT =
max(A,0), A~ = AT — A. Thus only nonegative vectors
and matrices are used.

The observer structure is described by:
i = [Ag—LC)z+[AA" " —AA" 2~ —AA T +AA 77

+Ly + b(t), (13)

and:
T=[Ay—LCIT+[AA T —AA* T —AA 2" +AA 2]

+Ly + b(t), (14)

Theorem 1. Assume that the state x is bounded and that
(Ag — LC) € M. Then, the observer structure pro-
posed above is an interval observer for the LPV system
if 2(0) < z(0) < Z(0). In addition, if there exist a matrix
PecR™" P =PT »0and~y > 0 such that the following
Riccati equation is satisfied:

GTP + PG+ 2y 2P* + 4y’ + Z7Z <0 (15)

then z,7 € L7 where ;= [|]AA — AA||2 and:
Ao — LC + AA™ —AA™

G = = R 16

~AAT Ay LC+AAT (16)

4. SIMULATION RESULTS

The following simulation results are the ones obtained
using a full vehicle nonlinear model validated by an ex-
perimental procedure on a real Renault Mégane Coupé.
The scenario used for the simulation is the as follows:

e The vehicle is running at 100km/h on a wet road (the
tire road contact friction coefficient decreases).

e The driver performs a double line change manoeuvre.

e A disturbing lateral wind occurs at vehicle’s front.

Using the estimation strategy previously defined in section
3, the following results are obtained.

Fig. 4 represents the estimation of the sideslip dynamics
of the car. This estimation is very important to evaluate
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Fig. 4. Sideslip estimation using interval analysis.

the behaviour and the stability of the vehicle. This result
shows the main result of the paper. The interval analy-
sis estimation gives a good approximation of the sideslip
angles and a guaranteed estimation envelope of these dy-
namics, which allows to evaluate the vehicle stability.
The vehicle stability is indeed directly correlated to

Stability index

t[s]

Fig. 5. Stability index A during the manoeuver.

the vehicle sideslip dynamics (8). The stability index
A = |2.498 +9.558 ‘ gives information about the vehicle

stability in the different driving situations. The result of
Fig. 5 shows the vehicle stability considering the estimated
sideslip angles. The vehicle stability region is derived from
the phase-plane (8 — ) as follows:

A<, (17

Stability region Evaluation
T
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Fig. 6. Evolution within the stability region: ﬁ-/B plane.

One of the motivations of the previously defined interval
analysis estimation of the sideslip angle is shown in Fig.
6. It allows to analyse the evolution of the vehicle in
the 8-8 plane. This result emphasizes the efficiency and
importance of the proposed estimation strategy.

5. CONCLUSION

This paper has presented an automotive vehicle sideslip
angles estimation in a bounded-error context. An estima-
tion based on an interval observer has been developed
using interval analysis tools and applied on a bicycle LPV
model reproducing the main dynamical behaviour of the
vehicle. It allows to estimate the lateral slip dynamics of
the car. Indeed, the sideslip dynamics of the car, highly
non linear, can not be metered using conventional sensors.
These informations are crucial to vehicle stability analysis
and evaluation.

Simulations performed on the full non linear model of Re-
nault Mégane Coupé proves the efficiency of the proposed
strategy.

Next step will be to optimize the experimental conditions
(see Li2 (2016)) using optimal inputs and then provide a
global control strategy based on this optimal estimation
approach.
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