C-CROC: Continuous and Convex Resolution of Centroidal dynamic trajectories for legged robots in multi-contact scenarios
Pierre Fernbach, Steve Tonneau, Olivier Stasse, Justin Carpentier, Michel Taïx

To cite this version:
Pierre Fernbach, Steve Tonneau, Olivier Stasse, Justin Carpentier, Michel Taïx. C-CROC: Continuous and Convex Resolution of Centroidal dynamic trajectories for legged robots in multi-contact scenarios. Rapport LAAS n° 18330. 2018. <hal-01894869>

HAL Id: hal-01894869
https://hal.laas.fr/hal-01894869
Submitted on 12 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
C-CROC: Continuous and Convex Resolution of Centroidal dynamic trajectories for legged robots in multi-contact scenarios

Pierre Fernbach, Steve Tonneau, Olivier Stasse, Justin Carpentier and Michel Taïx

Abstract—Synthesizing legged locomotion requires planning one or several steps ahead (literally): when and where, and with which effector should the next contact(s) be created between the robot and the environment? Validating a contact candidate implies a minimax the resolution of a slow, non-linear optimization problem, to demonstrate that a Center Of Mass (COM) trajectory, compatible with the contact transition constraints, exists.

We propose a conservative reformulation of this trajectory generation problem as a convex 3D linear program, CROC. It results from the observation that if the COM trajectory is a polynomial with only one free variable coefficient, the non-linearity of the problem disappears. This has two consequences. On the positive side, in terms of computation times CROC outperforms the state of the art by at least one order of magnitude, and allows to consider interactive applications (with a planning time roughly equal to the motion time). On the negative side, in our experiments our approach finds a majority of the feasible trajectories found by a non-linear solver, but not all of them. Still, we demonstrate that the solution space covered by CROC is large enough to achieve the automated planning of a large variety of locomotion tasks for different robots, demonstrated in simulation and on the real HRP-2 robot, several of which were rarely seen before.

Another significant contribution is the introduction of a Bezier curve representation of the problem, which guarantees that the constraints of the COM trajectory are verified continuously, and not only at discrete points as traditionally done. This formulation is lossless, and results in more robust trajectories. It is not restricted to CROC, but could rather be integrated with any method from the state of the art.

Index Terms—Multi contact locomotion, centroidal dynamics, Humanoid robots, legged robots, motion planning

I. INTRODUCTION

One long standing challenge in the domain of legged robotics is the proposition of a generic method, able to automatically synthesize motions for arbitrary robots in arbitrary environments. Resolving this issue is required to achieve a long term objective: the deployment of autonomous legged robots, able to navigate safely among unknown environments, outside of their research laboratories.

The term “multi-contact motion” has been proposed to distinguish this problem from the gaited locomotion problem [1], [2], because in this context no assumption can be made regarding the nature of the environment, or the contacts that will be created with it. In the multi contact case, the open problem of controlling a robot while satisfying dynamic and geometric constraints is made harder by the combinatorial aspect introduced by the choice (among an infinity of possibilities), of when and a where to create a contact between the robot and the environment, and with which effector. So far, this non-linear problem has remained out of reach of any existing method.

However, an increasing number of contributions consider the multi-contact problem, roughly following one of the two apparently different options: a) decompose the problem into a sequence of smaller problems, easier to solve [3]–[6]. In this case the difficulty is to find a formulation of the smaller problems equivalent to the original one, which results so far in approximations; b) Tackle the initial problem entirely, but in a computationally efficient way, through a reduction of the dimensionality, also obtained through approximations [7]–[9].

Both approaches have obtained significant successes, and while the authors lay in the former family of methods [10], [11], the objective of this paper is not to claim that one prevails. We rather claim that despite being different in spirit, those approaches face the same fundamental challenge: how to make sure that the solution computed using a reformulation of the multi-contact problem provides a straightforward solution to the original problem? As an example, both families of approaches propose contributions that rely on a model-based approach called the centroidal model, which only considers the dynamics of the Center Of Mass of the robot, rather than the whole-body dynamics. This model introduces approximations regarding the geometric constraints that lie on the robot, and also regarding the angular momentum variation induced by the motion of the rigid bodies that compose the robot. The question is then to determine whether it is possible to...
formulate additional constraints on the centroidal dynamics, that would take into account the whole-body constraints.

Finding what we call the “reduction properties”: formal theorems or empirical properties that will prove the validity of the problem decomposition or approximation, is the original scientific issue that we propose to tackle.

In particular, in this work, we consider what we call the transition feasibility problem: given two states of the robot, can we guarantee that there exists (or not) a dynamically and kinematically consistent motion that connects these two states (Figure 1)? Being able to address efficiently this issue is desirable in the context of the authors’ framework, but not only, as the objective is to provide additional guarantees to the centroidal model, and to improve significantly its computational efficiency. From an applicative point of view, its resolution would also allow to address the N-step capturability problem [12]–[14]: given the current state of the robot, determine whether it will be able to come to a stop without falling in at most N steps (N ≥ 0). This issue is very important to guarantee the safety of the robot and its surroundings.

A. The transition feasibility in a divide and conquer context

Over the last few years, we have proposed a methodology to tackle the multi-contact motion problem, which relies on its decomposition into three sub-problems solved sequentially (Figure 2). This approach follows a “divide and conquer” pattern, with the idea that three sub-problems should be addressed in a sequentially independent fashion: \(P_1 \), the planning of a trajectory for the root of the robot, \(P_2 \) the generation of a discrete contact sequence along the root’s trajectory and \(P_3 \) the generation of a whole-body motion from this contact sequence. We have proposed several contributions to each sub-problems [15]–[17], and built a prototype that demonstrated its capability to find solutions for various robots and environments, with interactive computation times (a few seconds of computation for several steps of motion).

The decoupling between each sub-problem allows to break the complexity, and comes with a cost that is the introduction of a feasibility problem: each sub-problem must be solved in the feasibility domain of the next sub-problems: ie. there must exist a sequence of contacts (problem \(P_2 \)) that can follow the root’s trajectory found (solution of \(P_1 \)), and similarly there must exists a feasible whole-body motion (problem \(P_3 \)) from the computed contact sequence (solution of \(P_2 \)). The latter problem is an instance of the transition feasibility problem that we address in this paper (The former was considered in [15]).

It is important to observe that in this context, establishing the transition feasibility as fast as possible is crucial: \(P_2 \) is a combinatorial problem, which implies that many contact sequences (thousands) must possibly be tried before finding a feasible contact sequence.

Recent contributions have proposed centroidal trajectory generation methods that could theoretically be used to answer the transition feasibility problem [18]–[20]. However, because of the combinatorial aspect of contact planning, the computational time required by these methods is too important to use

a trial-and-error approach to verify the feasibility. Caron et al. recently proposed a computationally efficient method [21], but its application range is restricted to single-contact to single-contact transitions.

The work that is the closest to the present paper is the one of Ponton et al. [22]. By integrating the dynamic constraints inside a mixed-integer programming problem [8], they addressed the transition feasibility problem at the contact planning level. However the constraints are only approximated through a convex relaxation (convex approximation is also done in [23]), and mixed-integer approaches remain subject to combinatorial explosion. The main difference between their formulation and the method presented in this paper lies in the fact that the presented method uses conservative dynamics constraints rather than approximated ones, and is also more computationally efficient.

B. Contribution

In this paper, as we tackle the transition feasibility issue, we also complete a framework able to automatically generate dynamic, collision free and multi-contact whole-body motions for a legged robot in complex environments. This framework has been presented in previous work: [15] [19] for \(P_1 \) and \(P_2 \), and [17] [18] for \(P_3 \). The framework is thus not directly a contribution of this paper.

The main contribution is the formulation of a transition feasibility criterion, able to test if there exists a kinematically and dynamically valid motion that connects two states of the robot, called CROC (which stands for Convex Resolution of Centroidal dynamic trajectories). Thanks to a conservative and convex reformulation of the problem, this is achieved in a fraction of the computational cost required by standard non-linear solvers. This method also produces a feasible CoM trajectory. This trajectory can be used as a valuable initial guess by a non-conservative non-linear solver to converge towards an optimal solution. Noticeably, this formulation is, along with [24], one of the few able to continuously guarantee that the computed trajectories respect the constraints of the problem, when other approaches require to discretize the trajectory and check punctually the constraints.

Thanks to this criterion, we can provide strong guarantees that the computed contact sequence will lead to a feasible whole body motion. This results in a major technical contribution, as we obtain and demonstrate a framework able to automatically and robustly generate complex motions, in simulation and on the real HRP-2 robot.

In the following section we recall the formal definition of the problem. In section III we present our approach for the feasibility criterion.

We then present our framework in section IV. Finally, we present our experimental results in section V.

C. Situation of the contribution with respect to the authors previous work

The present paper is an extension of an IROS conference paper [25], where we propose a convex optimization method
II. PROBLEM DEFINITION

We define the transition feasibility problem as follows. Given two configurations of a robot; given the contact locations associated to these two configurations; given the position, velocity and acceleration of the Center Of Mass of the robot at these two configurations; can we guarantee that there exists a feasible motion that connects the two configurations? A feasible motion should respect the kinematic constraints of the robot, as well as the dynamics expressed at its Center Of Mass. Depending on the use case, some constraints may be removed (for instance if the end configuration is unknown, or the problem is simply to put the robot to a stop).

Thus, in this work we define the transition feasibility problem with respect to the centroidal dynamics of a robot, as now commonly done [27], [19], [18]. In this section we provide some formal definitions that are used in the rest of the paper.

A. Contact sequence and state

A legged motion can be discretized into a sequence of contact phases, each differing by exactly one contact creation or removal. Each contact phase defines a number of active contacts, and their locations remain constant during the phase (for instance when walking, the contact sequence is gaited as it follows a periodic pattern: both feet in contact, left foot in contact, both feet in contact, right foot in contact...). Thus, each contact phase constrains kinematically and dynamically the motion of the robot.

We define a state \(x = (c, \dot{c}, \ddot{c}) \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \) as the triplet describing a Center Of Mass (COM) position, velocity and acceleration. To indicate that a state is compatible with the dynamic and kinematic constraints associated with a contact phase \(p \in \mathbb{N} \), we use the superscript notation \(x^{(p)} = (c^{(p)}, \dot{c}^{(p)}, \ddot{c}^{(p)}) \).

Given two states \(x^{(p)} \) and \(x^{(q)} \) with \(q \geq p \), the transition feasibility problem consists in determining whether there exists a feasible trajectory \(c(t), t \in [0, T] \), which connects exactly \(x^{(p)} \) and \(x^{(q)} \).

B. Centroidal dynamic constraints on \(c(t) \)

For a contact phase \(\{p\} \), for any \(t \in [0, T] \) the centroidal dynamic constraints are given by the Newton-Euler equations. These constraints form a convex cone (or polytope), which can be expressed under two different formulations, theoretically equivalent [28]–[30], but really different in practice. In this paper we present and discuss both formulations.

1) Equality constraint representation (or force formulation): The Newton-Euler equations are:

\[
\begin{bmatrix}
 m(\ddot{c} - g) \\
 mc \times (\ddot{c} - g) + \mathbf{L}
\end{bmatrix} = \begin{bmatrix}
 I_3 & \ldots & I_3 \\
 p_1 & \ldots & p_{nc}
\end{bmatrix} \mathbf{f}
\]

(1)

Where :
- \(m \) is the total mass of the robot;
- \(nc \) is the number of contact points;
- \(p_i \in \mathbb{R}^3, 0 \leq i \leq nc \) is the location of the i-th contact point;
- \(\mathbf{f} = [f_1, f_2, \ldots, f_{nc}]^T \in \mathbb{R}^{3nc} \) is the stacked vector of contact forces applied at each contact point;
- \(\mathbf{g} = [0 \ 0 \ -9.81]^T \) is the gravity vector;
• \(\mathbf{L} \in \mathbb{R}^3 \) is the derivative of the angular momentum (expressed at \(\mathbf{c} \)).

• \(\mathbf{p}_i \) denotes the skew-symmetric matrix of \(\mathbf{p}_i \).

The contact forces are further constrained to lie in their so-called friction cone, which we conservatively linearize with four generating rays. Thus \(\mathbf{f} \) has the form \(\mathbf{f} = \mathbf{V}\beta \), where \(\mathbf{V} \in \mathbb{R}^{3n_c \times 4n_c} \) is the matrix containing the diagonally stacked generating rays of the friction cone of each contact point and \(\beta \in \mathbb{R}^{4n_c} \) is a positive vector variable.

This formulation has the disadvantage of introducing a large number of variables associated to the contact forces (one vector \(\beta \) for each instant where the constraints are verified).

2) Inequality constraint representation (or Double Description formulation): Because the set of admissible contact forces is a polytope, it is possible to use an equivalent “face representation” of the constraints that apply to the center of mass and angular momentum. With this formulation, the force variables disappear:

\[
[H]_p \begin{bmatrix} m(c - g) \\ \mathbf{c} \times (c - g) + \mathbf{L} \end{bmatrix} \leq h(p)
\]

where \([H]_p \) and \(h(p) \) are respectively a matrix and a vector defined by the contact points of the phase and their friction coefficients.

With this formulation, the dimension of the problem is greatly reduced. However, the computation of the matrices \([H]_p \) and \(h(p) \) is a non-trivial operation called the double description method [29]. It is computationally expensive, and subject to occasional failures.

In the following theoretical sections, we will use the inequality formulation because we believe our contribution is more intuitive with this representation. In terms of implementation the equality formulation is more reliable but slower. However we show that under our formulation the computation times remain in the same order of magnitude in both cases.

3) The dynamic constraints are not convex: Because of the cross product between \(\mathbf{c} \) and \(\dot{\mathbf{c}} \), the constraints are not linear, and the issue of finding a trajectory satisfying them in the general case is a non-convex problem.

C. Centroidal kinematic constraints on \(\mathbf{c}(t) \)

Each active contact creates kinematic constraints on \(\mathbf{c}(t) \). We use linear constraints to represent these constraints depending on the 6D positions of each active contact frames. They give us a necessary but not sufficient condition for kinematic feasibility (evaluated and discussed in section 8.3). We refer the reader to [31] for the computation of these constraints. We write them \(\mathbf{K}[p]c \leq k[p] \) for phase \{p\}.

III. CONVEX FORMULATION OF THE TRANSITION PROBLEM

As previously proposed [25], in order to determine the existence of a valid centroidal trajectory \(\mathbf{c}(t) \), we formulate the problem as a convex one by getting rid of the non-linear constraints induced by the cross product \(\mathbf{c} \times \dot{\mathbf{c}} \). To achieve this we impose a conservative condition on \(\mathbf{c}(t) \).

However, a significant contribution with respect to [25] and other contributions is a continuous reformulation of the problem, which guarantees that the resulting trajectory is always valid. Indeed, traditionally the constraints are only verified at specific points of the trajectory, using a discretization step that must be carefully calibrated to avoid an explosion in the number of variables and constraints, while guaranteeing that the constraints won’t be violated in between.

A. Reformulation of \(\mathbf{c}(t) \) as a Bezier curve

Let us assume that \(\mathbf{c}(t) \) is described by an arbitrary polynomial of degree \(n \) of unknown duration \(T \). In such case, without loss of generality, \(\mathbf{c}(t) \) is equivalently defined as a constrained Bezier curve of the same degree \(n \):

\[
\mathbf{c}(t) = \sum_{i=0}^{n} B^n_i (t/T) \mathbf{P}_i
\]

where the \(B^n_i \) are the Bernstein polynomials and the \(\mathbf{P}_i \) are the control points.

With this formulation we can easily constrain the initial or final position, velocity or any other derivatives by setting the value of the control points. To connect exactly two states \(x_s = (c_s, \dot{c}_s, \ddot{c}_s) \) and \(x_g = (c_g, \dot{c}_g, \ddot{c}_g) \) we thus need at least 6 control points to ensure that the following constraints are verified:

• \(\mathbf{P}_0 = c_s \) and \(\mathbf{P}_n = c_g \) guarantee that the trajectory starts and ends at the desired locations;

• \(\mathbf{P}_1 = \frac{c_s}{n} + \mathbf{P}_0 \) and \(\mathbf{P}_{n-1} = \mathbf{P}_n - \frac{c_g}{n} \) guarantee that the trajectory initial and final velocities are respected;

• \(\mathbf{P}_2 = \frac{c_s}{n(n-1)} + 2\mathbf{P}_1 - \mathbf{P}_0 \) and \(\mathbf{P}_{n-2} = \frac{c_g}{n(n-1)} + 2\mathbf{P}_{n-1} - \mathbf{P}_n \) guarantee that the initial and final accelerations are respected.

Depending on the considered problem, some constraints on the boundary positions, velocities or accelerations can be removed, without changing the validity of our approach. For instance, if the objective is simply to put the robot to a stop, the end velocities and accelerations can be set to zero, while the end position is left unconstrained. We can also extend this to any degree and add constraints on initial or final jerk or higher derivatives and automatically compute the position of the control points with a symbolic calculus script such as the one that we provide at the url [31]. We only need to compute the equation of the control points once and for all so we do not need to compute them at runtime. In the following equations, we use a curve of degree 6 with the constraints on initial and final position, velocity and acceleration as described above, and the same reasoning applies to all cases.

B. Conservative reformulation of the transition problem

We now constrain \(\mathbf{c}(t) \) to be a Bezier curve of degree \(n = 6 \). This is a conservative approximation of the transition problem as it does not cover the whole solution space.

As we already need 6 control points to ensure that we connect exactly the two states, this leaves a free control point \(\mathbf{P}_3 = \mathbf{y} \).
\[
c(t, y) = \sum_{i \in \{0, 1, 2, 4, 5, 6\}} B_i^6(t/T) p_i + B_i^6(t/T) y \tag{4}
\]

In this case, \(y \) and \(T \) are the only variables of the problem. For the time being, we fix \(T \) to a constant value. We derive twice to obtain \(\ddot{c}(t) \), and compute the cross product to get the expression of \(\mathbf{w}(t) \):

\[
\mathbf{w}(t) = \left[\frac{m(\ddot{c} - g)}{m c} \times (\ddot{c} - g) + \mathbf{L} \right] \tag{5}
\]

The non-convexity of the problem disappears, because the cross product of \(y \) by itself is \(0 \), and all other terms are either constant or linear in \(y \). \(\mathbf{w}(t, y) \) is thus a six-dimensional Bezier curve of degree \(2n - 3 \) \([32] \) (9 in this case) linearly dependent of \(y \):

\[
\mathbf{w}(t, y) = \sum_{i \in \{0, 9\}} B_i^6(t/T) \mathbf{w}_i(y) + \mathbf{L}(t) \tag{6}
\]

where \(\mathbf{w}_i(y) \in \mathbb{R}^6 \) are the control points expressed as:

\[
\mathbf{w}_i(y) = \mathbf{w}_i^y y + \mathbf{w}_i^s \tag{7}
\]

The \(\mathbf{w}_i^y \in \mathbb{R}^{6 \times 3} \) and \(\mathbf{w}_i^s \in \mathbb{R}^6 \) are constants that only depend on the control points \(\mathbf{p}_i \) of \(c(t) \) and of \(T \).

In what follows, for the sake of simplicity, we assume \(\mathbf{L}(t) = 0 \). This is not a limitation: if we express \(\mathbf{L}(t) \) as a polynomial in the problem the following reasoning stands. One way to include \(\mathbf{L}(t) \) is to represent it as a Bezier curve with one or more free variables. However guaranteeing that we can generate a whole-body motion that tracks a variable \(\mathbf{L}(t) \) requires additional information on the whole-body motion, which we leave for future work \([19, 33]\).

The existence of a valid trajectory \(c(t) \) can thus be determined by solving a convex problem.

C. Application for a motion with no contact switch

We first consider the case where \(p = q = 1 \).

1) Continuous formulation: Using the fact that a Bezier curve is comprised in the convex hull of its control points, and assuming that the start and goal states are feasible (otherwise the problem has no solution), we only need to find a \(y \) such that \(y \) satisfies the kinematic constraints and the control points of \(\mathbf{w}(t, y) \) satisfy the dynamic constraints of the contact phase (Figure 3). In this case, the whole trajectory necessarily satisfies the constraints everywhere, as they form a convex set. This problem is thus a linear Feasibility Problem (FP) in 3 dimensions:

\[
\begin{align*}
\text{find } & y \\
\text{s. t. } & \mathbf{K}^{(p)} y \leq \mathbf{k}^{(p)} \\
& (m \mathbf{H}^{(p)} \mathbf{w}_i^y) y \leq \mathbf{h}^{(p)} + m \mathbf{H}^{(p)} \left[\begin{array}{c} g \\ 0 \end{array} \right] - \mathbf{w}_i^s, \forall i \tag{8}
\end{align*}
\]

Constraining the control points of \(\mathbf{w}(t) \) to satisfy the constraints of the trajectory is a \textit{priori} a conservative approach that further constrains the solution space (we will see that this limitation can be easily overcome). However, this approach allows for a continuous solution to the problem and guarantees that the trajectory is entirely valid.

2) Discrete formulation: Alternatively, we can remove the constraint on the control points of \(\mathbf{w}(t) \), and use a classical discretized approach to verify that some of the points of \(\mathbf{w}(t) \) satisfy the constraints. This approach is less conservative, although it increases the dimensionality of the problem, and introduces the risk that the constraints be violated between two discretization steps. Using a discretization step \(\Delta t \), we discretize \(\mathbf{w}(t, y) \) over \(T \) as follows:

\[
\mathbf{w}(j \Delta t, y) = \mathbf{w}_y^y y + \mathbf{w}_s^y \tag{9}
\]

Where \(\mathbf{w}_y^y, \mathbf{w}_s^y \) are constants given by \(\mathbf{P}_{\{0, 1, 2, 4, 5, 6\}} \), the total duration \(T \) and the time step \(j \Delta t \). \(j \) belongs to the phase set \(J^{(p)} \) : \(\{ j \in \mathbb{N} : 0 \leq j \Delta t \leq T^{(p)} \} \). We can now rewrite inequality (2) expressed at the discretization point \(j \Delta t \):

\[
\left(m \mathbf{H}^{(p)} \mathbf{w}_y^y \right) y \leq \mathbf{h}^{(p)} + m \mathbf{H}^{(p)} \left[\begin{array}{c} g \\ 0 \end{array} \right] - \mathbf{w}_s^y \tag{10}
\]

Thus we rewrite FP (8) in a discretized form:

\[
\begin{align*}
\text{find } & y \\
\text{s. t. } & \mathbf{K}^{(p)} e_j^y \leq \mathbf{k}^{(p)} \\
& \left(m \mathbf{H}^{(p)} \mathbf{w}_i^y \right) y \leq \left(m \mathbf{H}^{(p)} \mathbf{w}_i^s \right), \forall i \tag{11}
\end{align*}
\]

D. Application to a motion with one contact switch

We now consider the case where \(q = p + 1 \). In this case we define \(T^{(p)} \) and \(T^{(q)} \) as the time spent in each phase, such that \(T = T^{(p)} + T^{(q)} \).

When a contact switch occurs during a motion, the constraints applied to the CoM trajectory change at the switching time \(t = T^{(p)} \). When \(t < T^{(p)} \), the constraints of phase \(\{p\} \) must be applied and conversely, the constraints of phase \(\{q\} \) must be applied and when \(t > T^{(p)} \), at \(t = T^{(p)} \), the constraints of both phases must be applied.
Fig. 4: Example of curve decomposition with the De Casteljau algorithm. The original curve comprises 3 control points (black). It is decomposed into two curves comprising the same number of control points each (3). We can then constrain the control points of the first curve (red) to lie in the first set of constraints, and similarly constrain the control points of the second curve (green) to lie in the second set of constraints. As a result, if the constraints can be satisfied, the connecting control point of both curves satisfies both set of constraints, and we obtain the guarantee that each sub-curve satisfies its respective set of constraints. Interestingly, the control points of the sub-curves are constrained to belong to their respective cones, but those of the original curve can lie outside of the constraints.

1) Continuous formulation: In this case, since \(w(t) \) spans 2 distinct sets of linear inequalities, the convex hull of its control points is not guaranteed to lie in the constraint set. The key idea, and a main contribution with respect to the work of Lengagne et al. [24], is to fall back to the case where no contact switch occurs, by considering two curves that continuously connect at the switching time \(T(p) \). We use the De Casteljau algorithm to divide the original curve into two curves \(c(t, y) \), each curve being subject to the constraints of their respective contact phase (Figure 4). The result is thus the expression of the control points of two Bezier curves \(c(p)(t, y) \) and \(c(q)(t, y) \) with the same degree as the original curve, such that:

\[
\begin{align*}
\left\{ \begin{array}{l}
c(p)(t, y) = c(t, y) \quad \forall t \in [0; T(p)] \\
c(q)(t, y) = c(t, y) \quad \forall t \in [T(p); T]
\end{array} \right.
\]

(12)

The De Casteljau decomposition guarantees that \(c(p)(T(p), y) = c(q)(T(p), y) \), and that the composition of the curves in infinitely differentiable (\(C^\infty \)), as it is strictly equivalent to \(c(t, y) \). The control points of the new curves are linearly dependent on the control points of the original un-split curve, and thus have the form:

\[
c_{(z)}(t, y) = \sum_{i=0}^{n} B^n_i(t/T(p)) P_{i}^{(z)}(y) \quad \forall z \in \{p, q\}
\]

(13)

where \(P_{i}^{(z)} \) has the form:

\[
D_{i}^{(z)}(y) = P_{i}^{(z)}(y) + P_{i}^{(z)}
\]

(14)

with \(P_{i}^{(z)} \) and \(P_{i}^{(z)} \) constants.

It follows that \(w_1(p)(t, y) \) and \(w_2(q)(t, y) \) are also linearly dependent of \(y \):

\[
w_{1}(z)(t, y) = \sum_{i=0}^{n} B^n_i(t/T) w_{i}^{(z)}(y)
\]

(15)

with \(w_{i}^{(z)}(y) = w_{i}^{(z)}(y) + w_{i}^{(z)} \), \(\forall z \in \{p, q\} \)

Finally the constraints of \(K \) can be rewritten to deal with the contact switch. The kinematics constraints expressed at each control points are written:

\[
K_{i}(z) P_{i}^{(z)}(y) \leq K_{i}(z) + K_{i}(z) P_{i}^{(z)}(y), \forall i, \forall z \in \{p, q\}
\]

(16)

and the dynamic constraints:

\[
(mH_{i}(z) w_{j}^{(z)}) \leq h_{i}(z) + mH_{i}(z)([g_0] - w_{j}^{(z)}),
\]

(17)

\(\forall j, \forall z \in \{p, q\} \)

We can then stack the constraints:

\[
A = \begin{bmatrix} A_{0}^{(p)} & A_{0}^{(q)} \\ A_{0}^{(p)} & A_{0}^{(q)} \\ A_{2n-3}^{(p)} & A_{2n-3}^{(q)} \\ A_{2n-3}^{(p)} & A_{2n-3}^{(q)} \\ A_{2n-3}^{(p)} & A_{2n-3}^{(q)} \\ \end{bmatrix} a = \begin{bmatrix} D_{0}^{(p)} & D_{0}^{(q)} \\ \end{bmatrix} d = \begin{bmatrix} d_{0}^{(p)} \\ d_{0}^{(q)} \\ d_{0}^{(p)} \\ d_{0}^{(q)} \\ d_{0}^{(p)} \\ d_{0}^{(q)} \\ \end{bmatrix}
\]

(18)

We recall that in our case \(n = 6 \). Finally, we can rewrite FP (8) with a contact switch as:

\[
\text{find } y \\
\text{s. t. } Ay \leq a \\
Dy \leq d
\]

(19)

This boils down to check if each control point of each split curves satisfies the constraints of the current contact phase.

2) Discrete formulation: The discrete formulation of the problem is more straightforward: the formulation remains the same, with the only difference that the constraints that must be verified at each discretized point change at \(t = T(p) \) and \(t > T(p) \). We thus have 3 sets of constraints in this case: two for each phase, plus one for the transition time \(t = T(p) \) where the constraints of both phases apply. We define \(J_{i}^{(q)} \) :

\[
\{j \in \mathbb{N}, T(p) \leq j \Delta t \leq T(q)\}
\]

and obtain the following FP:

\[
\text{find } y \\
\text{s. t. } E_{j}^{(z)} y \leq c_{j}^{(z)}, \forall j \in J_{i}^{(z)}, \forall z \in \{p, q\}
\]

(20)
E. General case

In the general case, the same idea will apply. In the continuous case, we use the De Casteljau algorithm to split \(c(t) \) into as many curves as required, thus falling back to a formulation with no contact switches. In the discrete case, we assign the appropriate constraints for each discretized time step. While these decompositions appear mathematically heavy, from a programming point of view, they can be automatically generated, and thus are in fact simple to implement.

In our experiments, we only consider three consecutive phases (which correspond to one step), and solve a new problem for each subsequent set of phases. We call one such convex problem “CROC”, which stands for Convex Resolution of Centroidal dynamic trajectories.

F. Non-conservative continuous formulation

The presented continuous formulation is more conservative than the discretized one. Constraining the control points to lie inside the constraint set prevents the generation of curves such as the one shown in Figure 5. In particular, it is not possible for the curve to lie exactly on the constraint set, except for the start and end points (because the other control points are never reached by definition of a Bezier curve). However, coming back to the De Casteljau algorithm, one can make an interesting observation. Figure 5 illustrates the fact that while the control points of the sub-curves all lie in their respective constraint set, one control point of the original curve lies outside both sets.

When a curve is split, the formulation of the constraints changes: they no longer apply to the control points of the original curve, but to the control points of the sub-curves. The former are no longer constrained to lie in the constraint set (although they depend on the control points of the sub-curves).

In particular, it is then possible to assign the control points of the sub-curves exactly on a boundary of the constraint set, and as a result the original curve will lie partially on the boundary of the constraint set, without crossing it. If the curve is split an infinite number of times, it is straightforward to see that the original curve can span entirely its original definition set.

The price to pay is that the number of constraints increases with the number of curve divisions: a curve of degree \(s \) split \(b \) times comprises \((s + 1) \times (b + 1)\) constraints. The higher the number of splits, the more constraints to address. A parallel can be made with the discretized approach: the lower the discretization step is, the higher the number of constraints is.

We believe that a deeper analysis of the pros and cons of using a continuous formulation, not only in the case of CROC, but with any other formulation of the problem, requires a significant amount of research, and thus will be discussed in a future paper. In this paper, we only divide the curve at the transition points, and we show that this is in practice sufficient to perform as well as with the discretized approach, while ensuring comparable time performances.

G. Cost function and additional constraints

As the transition feasibility problem is addressed by CROC, a feasible COM trajectory is computed. It is possible to optimize this trajectory to minimize a given cost function \(l(y) \), either linear or quadratic. In the latter case problem \(\text{19} \) then becomes a Quadratic Program (QP). One can for instance minimize the integral of the squared acceleration norm or the angular momentum. This cost function is irrelevant to solve the transition feasibility problem, but it can be later used as a reference COM trajectory for a whole-body motion generator, or as an initial guess for a non-linear solver as discussed in Section V-A. The main interest of using a non-linear solver with the input of CROC is that the trajectory can then be refined globally (while the authors advise to use CROC with at most 3 contact phases), at the cost of a higher computational burden. Figure 6 provides a trajectory computed with CROC and the same trajectory refined with a non-linear solver as an illustration of the typical differences of both approaches.

The formulation also allows to add inequality constraints on \(c \) and any of its derivatives by rewriting the expression of the control points of the desired curve as done in equation \(\text{14} \). Here again, these constraints can either be verified continuously on the concerned control points, or in a discretized fashion. In any case, they take the form

\[
O_y \leq o
\]

We use such constraints to impose bounds on the velocity and acceleration of the center of mass or on the angular momentum variation. The most generic form of our problem is thus the generic QP:

\[
\begin{align*}
\text{min } & \quad l(y) \\
\text{s.t. } & \quad Ay \leq a \\
& \quad Dy \leq d \\
& \quad Oy \leq o
\end{align*}
\]

In our experiments we set constraints on the acceleration and velocity and minimize the squared acceleration norm as a cost \(l \). In the remainder of the paper “CROC” refers to the problem \(\text{22} \).

H. Time sampling

To remain convex, we choose not to include the duration of each phase \(T[p] \), \(T[p+1] \) and \(T[p+2] \) as variables of CROC. We rather sample various combinations of times and solve the corresponding QPs in sequence until a solution is
Fig. 6: Example of centroidal trajectories generated with CROC and a non linear-solver (bird eye view), in a case of bipedal walking. The red and green circles represent the contact positions of the (respectively) left and right feet centers over time. The yellow and orange (respectively related to single and double support phases) curve is the curve obtained through the concatenation of curves computed with CROC. The blue and green (respectively related to single and double support phases) curve is obtained through optimization of the latter curve with a non linear solver. The orange squares represent the constrained COM positions resulting from the contact planning phase, which are ignored by the non-linear solver to produce smoother motions.

Found. In theory, this would mean that we need to sample an infinity of combinations in order to be complete. However, we pragmatically reduce this number and give up on the completeness while maintaining a high success rate as follows.

We sampled a time for each duration phase \(T \{z\} \) by choosing a value between 0.1 and 2 seconds for phases without end-effector motion and between 0.5 and 2 seconds for phases with end-effector motion, with increments of 50ms. For a sequence of three phases with one phase with end-effector motion, this gives a total of 43320 possible combinations. We tested CROC with all these combinations on various problems: with HRP-2 or HyQ robots on flat and non-coplanar surfaces, for several thousands of states.

Upon analysis of the results of the convergence of the QPs, we found that we can use a small list of timings combinations (5 in our case, shown in table I) that covers 100% of the success cases for all the robots and scenarios tested. We thus solve a maximum of 5 QPs for each validation.

Figure 7 shows the evolution of the success rate according to the number of timings combinations used. We observe that 3 combinations are enough to reach 99% of success but that two additional combinations are required to reach exactly 100%.

<table>
<thead>
<tr>
<th>Timings (s)</th>
<th>Success rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T {p})</td>
<td>(T {p + 1})</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table I: Success rate with the five used timings combinations.

IV. EXPERIMENTAL FRAMEWORK

Figure 8 shows the complete framework used for our experiments, implemented with the Humanoid Path Planner [34] framework. The inputs are an initial (respectively goal) position and orientation for the root of the robot, as well as a set of bounds on the velocities and acceleration applying to the COM and the end-effector. The output is a dynamically consistent and collision free whole-body motion which can be played on a real robot as shown in section V.

In this paper, we only modify the contact generation method by adding CROC as a feasibility criterion. The other methods are black boxes and thus only briefly introduced, with a reference to their respective publications.

A. RB-RRT kinodynamic planner

The first block generates a rough guide trajectory for the root of the robot \(x(t)_{\text{planning}} \). RB-RRT is a planning method based on the sampling-based RRT algorithm, which plans a guide trajectory for the geometric center of a simplified model.
of the robot. It thus solves a problem of lower dimension than planning in the configuration space of the real robot. The goal of this method is to find a trajectory for the root of the robot which will allow contact creation. This block was first presented in [15] and later extended to a kinodynamic version in [16], which is the one we use.

B. Contact generator with CROC as a feasibility criterion

The contact generator block computes a contact sequence, as a list of whole body postures along the discretized guide trajectory \(x(t)_{\text{planning}} \). It also generates an initial guess of the timing of each contact phase. This method was also introduced in [15]. CROC is integrated as a feasibility criterion within this contact generator. More precisely it is used as a filter to determine which transitions are unfeasible and discard them during the planning in order to produce contact sequence containing only feasible transitions. The integration of CROC to this pipeline provides strong guarantees that the computed contact sequence will lead to a feasible CoM trajectory and thus that the centroidal dynamic solver will converge with this contact sequence as input.

A byproduct of this test is a feasible CoM trajectory between each adjacent contact phases \(x(t)_{\text{initGuess}} \). This trajectory, not optimal, is used as a warm-start for a non-linear solver which will use it to compute a more optimal trajectory. The three different trajectories found in the framework of the figure are shown in the figure \(8 \). \(x(t)_{\text{planning}} \) is represented in black, \(x(t)_{\text{initGuess}} \) in yellow and orange and \(x(t) \) in green and blue.

C. Centroidal dynamic solver

The centroidal dynamic solver block was proposed in [18], it takes as input the contact sequence found by the previous block, along with an initial guess of the timing of each phases and an initial guess of the CoM trajectory. The output of this block is a CoM trajectory that respects the centroidal dynamics of the robot \(x(t) \) and minimize a tailored cost function. This method solves an optimal control problem with a multiple-shooting algorithm implemented in MUSCOD-II [35].

D. Inverse kinematics

Finally, the whole-body motion \(q(t) \) is generated with a second order Inverse Kinematics solver, similar to [36]. This method takes as input a reference trajectory for the CoM, as well as references for the trajectories of the end-effectors.

E. End-effector trajectory

In order to automatically generate valid end-effector trajectories for complex and constrained scenarios, we use a dedicated block. The trajectories computed are such that the whole limb is collision free and respect the kinematic constraint. The trajectories are represented as Bezier curves constrained to have a null initial and final velocity, acceleration and jerk which respect velocity, acceleration and jerk bounds along the whole trajectory. In order to guarantee that the whole surface of the effector creates or breaks the contact at the same instant the curves are also constrained to have a velocity orthogonal to the contact surface for a small time step at the beginning and the end of the trajectory.

The positions of the control points of this Bezier curve are computed as the solution of a QP optimization method, which is called iteratively to find a compromise between a reference optimal trajectory and a collision free one, provided by a probabilistic planner. This planner computes a geometric path for the moving limb that respects all the kinematic and collision constraints but which may present discontinuities in velocity and higher derivatives and do not respect the dynamic constraints described in the previous paragraph. This path is then used in the cost function of our optimization method in order to produce a trajectory as smooth as possible and without any useless motion while being collision free and respecting all the kinematics and dynamics constraints.

Fig. 8: Complete experimental framework.
V. RESULTS

A. Performances of CROC

Computing the success rate of our method is a hard task because we do not have any way to determine the "ground truth" feasibility of a transition (ie. there does not exist any method able to determine in finite time whether there exists a valid centroidal trajectory between the two states). Still, as the goal is to solve the contact planning problem (P_2) in the feasibility domain of the centroidal motion generation problem (P_3), we do not need to compare our method against the ground truth but only against the non linear solver used by P_3, presented in section IV-C.

In the table II we show the success rate and the computation time of our method. We compare the method presented in this paper (with the continuous formulation) against the non linear solver with a naive warm start, and the non linear solver with the solution of our method as a warm start when it is available. This last method is considered as our ground truth.

The methods were tested with randomly generated sequences of 3 contact phases such that:
- both initial and final contact phases are in static equilibrium
- both initial and final contact phases have the same number of effectors in contact, between two and four
- there is exactly one contact repositioning between both initial and final contact phases and no other contact variation
- the intermediate contact phase is not required to be in static equilibrium.

We considered two kind of scenarios. In the first case we only sample contact phases with coplanar contacts. In the second case we sampled truly random contacts, which lead to contact phases with non-coplanar contacts and contact sequences that require complex motions. The results are shown in the table II

All the benchmarks were run on a single core of an Intel Xeon CPU E5-1630 v3 at 3.7Ghz. The QP problems are solved with QuadProg, and the FP problems with GLPK.

<table>
<thead>
<tr>
<th>Method</th>
<th>Coplanar success (%)</th>
<th>Non-coplanar success (%)</th>
<th>Total time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROC (DD)</td>
<td>88.4</td>
<td>57.2</td>
<td>3.93</td>
</tr>
<tr>
<td>CROC (force)</td>
<td>88.4</td>
<td>57.2</td>
<td>13.01</td>
</tr>
<tr>
<td>OCP (warm start)</td>
<td>100</td>
<td>100</td>
<td>130</td>
</tr>
</tbody>
</table>

TABLE II: Comparison between CROC and a non linear solver for randomly generated contact sequences of three contact phases. The two first methods are the ones presented in this paper, with the continuous formulation and using either the inequality representation of the dynamic constraints (DD) or the equality representation (force). These methods are compared with the non linear solver presented in [18], either with their naive warm start (OCP) or with the solution found by CROC as a warm start when available (OCP warm start). This last method is used as a "ground truth" for computing the success rate.

1) How conservative is our CROC? Because of its conservative reformulation, CROC does not cover the whole solution space. As expected, our method find less solutions than the non linear solver used. In the coplanar case, CROC almost finds 90% of the solutions. In the non-coplanar case the centroidal trajectory may be required to present several changes of direction and/or to be really close of the constraints, which explains the difference of success rate between the two cases. However, even in such cases CROC still finds the majority of the solutions.

2) Computation time: As claimed in the introduction, CROC is about two order of magnitude faster than the non linear solver that we are using for the centroidal motion generation. Thanks to this efficiency, it is realistic to use our method during the contact planning to evaluate hundreds of candidate transitions.

For the inequality representation with the double description method, the computation time allocated to solve the QP of equation (22) is extremely fast with 50µs on average. The computation time of CROC, which comprises the time required to solve the QP and the time required to compute all the constraints matrices of equation (18) is around 400µs. The total time also includes the time required by the double description method. In some use cases, the same contact phases may be used several times and the double description method only needs to be computed once per contact phase, thus the time required for the double description may be factorized.

The major difference between the two representations lies in the dimension of the variables and the constraints of the problem, which is greater in the case of the force formulation. As shown in Table III the computation times between the double description and the force formulations remain in the same order of magnitude for 2 to 4 contacts, with an advantage for the double description. However this advantage reduces as the number of contacts increase. Indeed, while the computation time for the force formulation doubles at each additional contact, the time grows cubically with the Double Description (DD) formulation.

3) Comparison between continuous and discretized formulation: Table IV compares four variants of CROC: the discretized version presented in [25] with three different values of number of discretization points per phases and the continuous version presented in this paper. The experimental protocol is the same as in the previous sub-section.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Metric</th>
<th>Number of contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DD</td>
<td>DD time (ms)</td>
<td>3.56</td>
</tr>
<tr>
<td></td>
<td>Total time (ms)</td>
<td>4.19</td>
</tr>
<tr>
<td>Force</td>
<td>Total time (ms)</td>
<td>13.01</td>
</tr>
</tbody>
</table>

Table III: Comparison between the computation times required to generate and solve the FP defined by CROC using either the Double Description (DD) or the Force formulation.

<table>
<thead>
<tr>
<th>Method</th>
<th>Coplanar Success (%)</th>
<th>Non-coplanar Success (%)</th>
<th>Total time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (3 pts)</td>
<td>89.7</td>
<td>61.4</td>
<td>0.20</td>
</tr>
<tr>
<td>D (7 pts)</td>
<td>89.7</td>
<td>60.6</td>
<td>0.37</td>
</tr>
<tr>
<td>D (15 pts)</td>
<td>89.1</td>
<td>57.2</td>
<td>0.75</td>
</tr>
</tbody>
</table>

TABLE IV: Comparison between the method CROC with the discrete formulation (D), with varying number of discretization points, and the continuous formulation (C) presented in this paper. The “ground truth” used to compute the success rate is the non linear solver of [18].

The third and fifth columns of Table IV show the percentage of solutions found that were not dynamically valid. These tests were made by evaluating the dynamic constraints with a really small discretization step on the centroidal trajectory found. Only the discretized version of CROC ([25]) can find such invalid solutions, and depending of the number of discretization points used it can reach a non negligible value. This issue is common to all methods that relies on discretization and this results emphasizes the fact that we need a continuous method, able to check exactly whether the whole trajectory is valid.

The drawback of using the continuous formulation proposed in the section III is that it is more conservative than the discretized formulation. However, according to our results, the discretized version found a solution while the continuous version did not converge only 5.7 % of the times. This number is similar to the percentage of invalid solutions computed with the discretized approach, and thus appears favorable. Moreover, in the section III-D1 we proposed to only split the trajectory in one curve for each contact phases but it’s possible to split the trajectory in an arbitrary number of curves, as long as each curve is entirely contained in one contact phases, as detailed in section III-E. By increasing the number of split curves, we can further reduce the loss of solutions.

4) Using CROC to warm start a non linear solver: Choosing an initial guess for the non linear solver of a trajectory generation method is essential but may be challenging for multi-contact motions. The quality of this initial guess has a significant influence on the convergence of the non linear solver. For the trajectory generation method used in our framework, [18] proposed a naive initial guess of the centroidal trajectory based solely on the position of the contact points and a predefined height.

Interestingly, Table II suggests that the solution set spanned by CROC is not strictly included in the one spanned by this non linear solver with this naive initial guess. Using the solution of CROC to warm start the non linear solver can thus help it to converge and increase it’s success rate. As shown in Table II this increase only appears for the non-coplanar case because the naive initial guess used is always close to a valid solution in the coplanar case. We expect that the importance of the initial guess will grow if the contact sequences do not allow static equilibrium configurations at the contact phases, and will check this hypothesis in the future.

Moreover, by using the solution of CROC to warm start the non linear solver we measured a reduction of the number of iterations required to converge of 20% on average, reducing the total computation time (ie it is faster to use CROC than the non-linear solver, even if CROC fails, than using the non-linear solver directly).

5) Validity of our kinematic constraints: As explained in the section II-C our representation of the kinematics constraints is a necessary but not sufficient approximation. In order to evaluate the accuracy of this approximation, for each feasible transition found by CROC between random configurations, we tested explicitly the kinematic feasibility of the centroidal trajectory with an inverse kinematic. This tests showed that 17.5 % of the trajectories found by CROC were not kinematically valid. This shows that our approximation of the kinematic constraints is not sufficient. However, this is not a limitation of our formulation. Indeed, any other linear representation of the kinematic constraints could be incorporated in our method. Moreover, by doing the same tests without any kinematic constraints we found a total of 72.3 % of kinematically unfeasible trajectories, this results show the interest of our kinematic constraints approximation to greatly improve the feasibility of the trajectories found by CROC.

B. Experimental results

Fig. 9: Unfeasible stepping strategies invalidated by CROC.

Fig. 10: 3D solution space for CROC (green polytope). The red point is a solution that generates the displayed trajectory.

The complete experimental framework presented in the previous section was tested on several scenarios in semi structured environments, each scenario showing specific features or difficulties. We insist that the only manual inputs given to our framework were an initial and a goal position for the root of the robot. Most of the obtained motions are demonstrated in the companion video. They were validated either in a dynamics simulator or on the real robot.
1) Inclined platform crossing: This scenario requires the robot to go from one flat platform to the other by taking a step in an inclined platform (Figure 1). The scenario is designed such that no quasi-static solution exists to the problem, and is truly multi-contact in the sense that part of the motion occurs entirely on non-flat ground. CROC allows to invalidate unfeasible contact sequences that would involve directly taking a step on the final platform, or take a step with the right foot first (Figure 9). It rather allows to find a solution where the left foot is used to step on the inclined platform Figure 1, which leads to a feasible whole-body motion demonstrated in the companion video.

Additionally, CROC also allows to ensure that the left foot is positioned in such a way that the problem becomes feasible, which is not trivial considering the size of the solution space for the chosen step position (Figure 10).

2) 10 cm high steps: This experimental setup is an industrial set of stairs shown in Figure 11 and 12(a). It consists of six 10 cm high and 30 cm long steps. This experiment was done with the HRP-2 robot. All the valid contact sequences produced contain at least 13 contact phases as the robot is kinematically constrained to put both feet on each step.

The complete motion is shown in the companion video. The crouching walk seen is required to avoid singularities in the knee of the extending leg, which are not tolerated by the low-level controller.

An exemple of unfeasible contact sequence filtered out by our feasibility criterion is depicted on Figure 13. All three configurations in this sequence are valid (i.e. respect kinematics and dynamics constraints) but there isn’t any valid centroidal trajectory between the last two configurations. Our feasibility criterion will filter out this kind of contact transitions during contact planning.

3) 15 cm high steps with handrail: This other set of stairs is composed of four 15 cm high steps and equipped with a handrail. The contact sequence is shown in Figure 12(b) and snapshots of the motion are shown in Figure 14. This is a typical multi-contact problem, showing a acyclic contact sequence with non co-planar contact surfaces. The problem was already solved in a previous work [17], but the input contact sequence and effector trajectories had to be manually selected from a large number of trials. In this paper, the only input is a root goal position at the top of the stairs.

4) Flat surface with ground level obstacles: This experimental setup consists of a flat floor with obstacles, shown in Figure 12(c) and (d). In (c) there is only one obstacle in front of the robot’s initial position, in (d) we add smaller obstacles on the floor. This scenario shows that our planner is able to compute a valid guide root trajectory that avoid bigger obstacles and that our contact planner is able to avoid collision with smaller obstacles on the ground.

The difficulty of this scenario lies on the generation of collision free feet trajectories. Indeed, some obstacles are small enough to permit the feet to pass over the obstacles, but others are too high and require a lateral motion of the feet to avoid them. As shown in Figure 15 our method presented briefly in section IV-E is able to find such trajectories automatically.

5) Uneven platforms: This setup consists of 30 cm long and 20 cm wide platforms, oriented of 15°around either the x
Fig. 13: Example of unfeasible contact transition detected by CROC and rejected during contact planning

Fig. 14: A feasible multi-contact sequence for a stair climbing with handrail support on the HRP-2 robot automatically computed with our contact planner and CROC.

Fig. 15: Feet trajectories computed for scenario with ground level obstacles. Green for right foot and red for left foot.

Fig. 16: A feasible contact sequence computed with our contact planner and CROC on uneven platforms.

Fig. 17: Examples of unfeasible contact sequences filtered out by CROC. There doesn’t exist any valid centroidal trajectory for the contact transitions encircled in black.

or y axis. This scenario is particularly difficult for the contact planner because of all the possible collisions generated by the feet. We recall that the feet of HRP-2 are 24 cm long for 14 cm wide, which means that the platforms of this setup are only a few centimeters bigger than the feet of the robot. Because of this, there is really few collision free candidates positions for the feet. The probability of finding a contact position which leads to a collision-free configuration while maintaining the equilibrium is extremely small for this setup.

The contact sequence found is shown in Figure 12(e), snapshots of the motion are shown in figure 16 and a motion for this scenario is shown in the companion video. These motions have been validated in the dynamic simulator OpenHRP.

The Figure 17 shows two examples of unfeasible contact sequence filtered out by CROC in this scenario.
The contact planner uses some approximations that may result in failures during the planning. When this occurs in general one can simply restart the planner until a solution is actually found. Thus the success rate is only indicative here. The relevant information is rather the success rate of the trajectory generation.

The trade-off is a small increase of the computation time required by the contact generator. This is explained partly by the addition of the time required to run CROC for each candidates, but mostly by the fact that we need to evaluate a lot more candidates before we find a valid one (ie. which lead to a feasible transition). This is shown in the column 5 of Table VI which provides the average number of contact candidates evaluated during a run of the contact planner. Another drawback is a decrease of the success rate of the contact generator, explained by the fact that it can get stuck with only unfeasible candidates. But this decrease is only virtual because without CROC the planner could find unfeasible contacts sequences which count as success for the contact planning, while with CROC all success of the contact planning are feasible contact sequences.

The contact planner uses some approximations that may result in failures during the planning. When this occurs in general one can simply restart the planner until a solution is actually found. Thus the success rate is only indicative here. The relevant information is rather the success rate of the trajectory generation.

C. Benchmarks

1) Using CROC as a feasibility criterion: In order to quantify the improvement of our contact planner from the use of CROC as the feasibility criterion, we used the following test procedure: for some of the scenarios presented in the previous section, we tried to solve the problem using our framework with and without using CROC as a feasibility criterion during the contact planning. We then measured the success rate of the contact planner in both cases, and when it succeeded we tried the centroidal trajectory generation with the contact plan found and measured the success rate of this step. The results are shown in Table V.

In the walking on flat floor scenario, CROC brings only a marginal improvement to our contact planner because our previously used heuristics were sufficient in this case to provide a feasible contact plan most of the time. However, in all the other cases the results empirically prove the main claim of this paper: using CROC as a feasibility criterion during the contact generation greatly increases the success rate of the centroidal trajectory generation because it produce contact plans with only feasible transitions. Another expected result is that there isn’t any ‘false positive’ found by our method: when CROC converges, the non linear solver always converges for the same transition.

The trade-off is a small increase of the computation time required by the contact generator. This is explained partly by the addition of the time required to run CROC for each candidates, but mostly by the fact that we need to evaluate a lot more candidates before we find a valid one (ie. which lead to a feasible transition). This is shown in the column 5 of Table VI which provides the average number of contact candidates evaluated during a run of the contact planner. Another drawback is a decrease of the success rate of the contact generator, explained by the fact that it can get stuck with only unfeasible candidates. But this decrease is only virtual because without CROC the planner could find unfeasible contacts sequences which count as success for the contact planning, while with CROC all success of the contact planning are feasible contact sequences.

2) Benchmarks of the complete framework: Table VI shows a benchmark of the performances of the complete motion planning framework presented in section IV. We recall that this framework take as input only an initial and goal position for the center of the robot and produce as output a whole body motion. We observe that the success rate is close to 100% except for complex scenarios where it is still above 80% in the worst case. The main cause of failure in our current implementation of the framework is the inverse kinematics that may produce whole-body motions that do not respect the kinematic constraints or that are in self-collision. Concerning the computation time, in most of the cases we achieve interactive performances (ie. the computation time is smaller than the motion duration). In the worst case the computation time is greater than the motion duration, but only by a small margin.

As shown in Figure 18 the inverse kinematics method is currently the bottleneck of our framework and takes more than 60% of the total computation time, as it requires several iterations to generate collision-free trajectories.

Table V: Evaluation of the feasibility of the contact plans found with or without CROC as a feasibility criterion. The Contact Planning column shows the success rate of the contact planner (ie when it successfully reaches the goal root’s position with a contact sequence), the computation time required, the average number of contact candidates evaluated per runs, and the average number of configurations in contact in the solution. The last column shows the success rate of the centroidal trajectory generation method with the contact sequence found by the planner.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Method</th>
<th>success (%)</th>
<th>time (s)</th>
<th>n. of candidates (avg.)</th>
<th>n. of configurations (avg.)</th>
<th>Centroidal trajectory generation success (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walk (flat)</td>
<td>Without CROC</td>
<td>100</td>
<td>0.58</td>
<td>8.2</td>
<td>6.3</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>With CROC</td>
<td>100</td>
<td>0.63</td>
<td>21.9</td>
<td>7.0</td>
<td>100</td>
</tr>
<tr>
<td>Stairs (3 steps)</td>
<td>Without CROC</td>
<td>100</td>
<td>0.61</td>
<td>24.4</td>
<td>6.1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>With CROC</td>
<td>94</td>
<td>0.82</td>
<td>87.3</td>
<td>7.3</td>
<td>100</td>
</tr>
<tr>
<td>Stairs (handrail)</td>
<td>Without CROC</td>
<td>98</td>
<td>1.24</td>
<td>144.3</td>
<td>11.6</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>With CROC</td>
<td>84</td>
<td>1.57</td>
<td>322.6</td>
<td>13.2</td>
<td>100</td>
</tr>
<tr>
<td>platforms</td>
<td>Without CROC</td>
<td>47</td>
<td>1.84</td>
<td>319.2</td>
<td>9.3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>With CROC</td>
<td>32</td>
<td>2.43</td>
<td>969.6</td>
<td>9.8</td>
<td>100</td>
</tr>
</tbody>
</table>

Table VI: Performance analysis of the complete motion planning framework presented in section IV without the time required to compute collision free end-effector trajectory. Motion duration is the average duration of the solution, total time is the average computation time required to compute the motion. Success is the success rate of the complete framework.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Motion duration (s)</th>
<th>Total time (s)</th>
<th>Success (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walk (3 steps)</td>
<td>7.7</td>
<td>4.43</td>
<td>100</td>
</tr>
<tr>
<td>Walk with obstacles</td>
<td>15.02</td>
<td>51.5</td>
<td>99.3</td>
</tr>
<tr>
<td>Uneven platforms</td>
<td>14.94</td>
<td>17.83</td>
<td>83.5</td>
</tr>
<tr>
<td>Stairs</td>
<td>16.23</td>
<td>12.56</td>
<td>90.5</td>
</tr>
<tr>
<td>Stairs with handrail</td>
<td>23.13</td>
<td>18.09</td>
<td>88.05</td>
</tr>
</tbody>
</table>
limited to quasi-static motions. To our knowledge, this is the first method to combine all these properties.

Thanks to the computational efficiency of our method, requiring only a few milliseconds to solve the centroidal dynamic problem with three contact phases, we can use this method as a feasibility criterion during contact planning. The interest of this feasibility criterion have been shown both qualitatively and empirically, our results show that all the contact plans produced with CROC as a feasibility criterion lead to feasible centroidal dynamic problems. We also show that without using this feasibility criterion, the contact planner find unfeasible contact sequences with a high probability on complex scenarios.

Moreover, the centroidal trajectory produced by CROC can be used to warm-start a non linear solver, resulting in the improvement on the convergence rate and computation time of the non linear solver by comparison to the naive initial guess previously used.

Thanks to the continuous formulation proposed in this paper, we have the guarantee that the whole centroidal trajectory is valid, by opposition to the discretized methods of the state of the art that only guarantee that the discretized points of the trajectory are valid. We showed that the discretization may lead to a non negligible amount of invalid solutions where the trajectory is invalid between two valid discretization points, which emphasizes the interest of a continuous formulation.

We believe that this continuous formulation of the constraints on the centroidal trajectory may be useful for all state-of-the-art methods, convex or non-linear. We leave the study of the feasibility and the interest of this application to a future work.

Finally, the feasibility criterion proposed in this paper permits us to complete our locomotion planning framework [11]. In this paper we showed that our framework is able to produce indifferently simple walking motions and multi-contact motions (ie. with non coplanar contacts and acyclic behaviors). These motions were validated in simulation or on the robot HRP-2. We also showed empirically that our framework presents a success rate close to 100% and present interactive computation times (the time required to compute a motion is smaller than the duration of this motion) in the studied scenarios, expect for the most complex scenario where the computation time is approximately 20% greater than the duration of the motion, but still remain in the same order of magnitude. We believe that with an optimization of the implementation, interactive performances could be achieved even in the worst cases.

For future work we would like to try more complex motions on the real robotic platform, but we are currently limited by the capabilities of our low level controller.

A. Handling whole-body approximations and uncertainties

The remaining source of approximation is shared with all centroidal-based methods, and comes from the whole-body constraints (joint limits, angular momentum and torques), which are only approximated or ignored in the current formulation. One solution could be to alternate centroidal optimization with whole-body optimization as other approaches do [19], however for the transition feasibility problem, this approach would result in an increased computational burden that is not compatible with the combinatorial aspect of the search. One way to improve the quality of this approximation is to integrate torque constraints [38], [39]. Expressing such constraints at the CoM level is considered for future work.

B. Application to 0 and 1 step capturability

The N-Step capturability problem consists in determining the ability of a robot (in a given state) to come to a stop (ie. null velocity and acceleration) without falling by taking at most N steps. It is used to detect and prevent fall.

We can easily change the constraints on \(c(t)\) defined in subsection III-A to remove the constraint on \(c_g\) and constrain \((\dot{c}_g = 0, \ddot{c}_g = 0)\). With this set of constraints, the feasibility of FP (3) determines the 0-Step capturability. Similarly, FP (19) determines the 1-Step capturability.

For future work we would like to empirically determine the accuracy of our method with respect to this problem, using a framework similar to [14].

Code available (C++/python) under a BSD-2 license: https://gitlab.com/stoneau/bezier_COM_traj

ACKNOWLEDGMENT

REFERENCES

